Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

On normal partitions in cubic graphs

100%
EN
A normal partition of the edges of a cubic graph is a partition into trails (no repeated edge) such that each vertex is the end vertex of exactly one trail of the partition. We investigate this notion and give some results and problems.
2
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

On Fulkerson conjecture

100%
EN
If G is a bridgeless cubic graph, Fulkerson conjectured that we can find 6 perfect matchings (a Fulkerson covering) with the property that every edge of G is contained in exactly two of them. A consequence of the Fulkerson conjecture would be that every bridgeless cubic graph has 3 perfect matchings with empty intersection (this problem is known as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect matchings. We show here how to derive a Fulkerson covering from two FR-triples. Moreover, we give a simple proof that the Fulkerson conjecture holds true for some classes of well known snarks.
3
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Mácajová and Škoviera conjecture on cubic graphs

100%
EN
A conjecture of Mácajová and Skoviera asserts that every bridgeless cubic graph has two perfect matchings whose intersection does not contain any odd edge cut. We prove this conjecture for graphs with few vertices and we give a stronger result for traceable graphs.
4
81%
EN
A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition. In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition $L = (L_B,L_R)$ is said to be odd whenever each path of $L_B ∪ L_R$ has odd length and semi-odd whenever each path of $L_B$ (or each path of $L_R$) has odd length. In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings.
5
81%
EN
We consider cubic graphs formed with k ≥ 2 disjoint claws $C_i ~ K_{1,3}$ (0 ≤ i ≤ k-1) such that for every integer i modulo k the three vertices of degree 1 of $C_i$ are joined to the three vertices of degree 1 of $C_{i-1}$ and joined to the three vertices of degree 1 of $C_{i+1}$. Denote by $t_i$ the vertex of degree 3 of $C_i$ and by T the set ${t₁,t₂,...,t_{k-1}}$. In such a way we construct three distinct graphs, namely FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j ∈ {1,2,3}) is the graph where the set of vertices $⋃_{i = 0}^{i = k-1} V(C_i)∖T$ induce j cycles (note that the graphs FS(2,2p+1), p ≥ 2, are the flower snarks defined by Isaacs [8]). We determine the number of perfect matchings of every FS(j,k). A cubic graph G is said to be 2-factor hamiltonian if every 2-factor of G is a hamiltonian cycle. We characterize the graphs FS(j,k) that are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph" of Robertson, Seymour and Thomas [15]). A strong matching M in a graph G is a matching M such that there is no edge of E(G) connecting any two edges of M. A cubic graph having a perfect matching union of two strong matchings is said to be a Jaeger's graph. We characterize the graphs FS(j,k) that are Jaeger's graphs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.