Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

1D dynamics of a second-grade viscous fluid in a constricted tube

100%
EN
Using a one-dimensional hierarchical model based on the Cosserat theory approach to fluid dynamics we can reduce the full 3D system of equations for the axisymmetric unsteady motion of a non-Newtonian incompressible second-grade viscous fluid to a system of equations depending on time and on a single spatial variable. From this new system we obtain the steady relationship between average pressure gradient and volume flow rate over a finite section of a straight constricted tube, and the corresponding equation for the wall shear stress.
2
Content available remote

Numerical simulation of a viscoelastic fluid with a preconditioned Schwarz method

100%
EN
In this paper we apply a domain decomposition method to approach the solution of a non-Newtonian viscoelastic Oldroyd-B model. The numerical scheme is based on a fixed-point argument applied to the original non-linear system of partial differential equations decoupled into a Navier-Stokes system and a tensorial transport equation. Using a modified Schwarz algorithm, involving block preconditioners for the Navier-Stokes equations, the decoupled problems are solved iteratively. Numerical simulations on a 4:1 abrupt contraction flow problem are considered to validate the scheme.
3
Content available remote

On a constrained minimization problem arising in hemodynamics

100%
EN
Experimental evidence collected over the years shows that blood exhibits non-Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress and thixotropic behaviour. Under certain conditions these characteristics become relevant and must be taken into consideration when modelling blood flow. In this work we deal with incompressible generalized Newtonian fluids, that account for the non-constant viscosity of blood, and present a new numerical method to handle fluid-rigid body interaction problems. The work is motivated by the investigation of interaction problems occurring in the human cardiovascular system, where the rigid bodies may be blood particles, clots, valves or any structure that we may assume to move rigidly. This method is based on a variational formulation of the fully coupled problem in the whole fluid/solid domain, in which constraints are introduced to enforce the rigid motion of the body and the equilibria of forces and stresses at the interface. The main feature of the method consists in introducing a penalty parameter that relaxes the constraints and allows for the solution of an associated unconstrained problem. The convergence of the solution of the relaxed problem is established and some numerical simulations are performed using common benchmarks for this type of problems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.