Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We show that every operator from $ℓ_{s}$ to $ℓ_{p} ⊗̂ ℓ_{q}$ is compact when 1 ≤ p,q < s and that every operator from $ℓ_{s}$ to $ℓ_{p} \widehat{⊗̂} ℓ_{q}$ is compact when 1/p + 1/q > 1 + 1/s.
EN
We completely determine the $ℓ_{q}$ and C(K) spaces which are isomorphic to a subspace of $ℓ_{p} ⊗̂_{π} C(α)$, the projective tensor product of the classical $ℓ_{p}$ space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from $ℓ_{p}$ to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states that the only $ℓ_{q}$ space which is isomorphic to a subspace of $ℓ_{p} ⊗̂_{π} C(α)$ with 1 ≤ p ≤ q < ∞ and ω ≤ α < ω₁ is $ℓ_{p}$. The second main theorem concerning C(K) spaces improves a result of Bessaga and Pełczyński which allows us to classify, up to isomorphism, the separable spaces 𝓝(X,Y) of nuclear operators, where X and Y are direct sums of $ℓ_{p}$ and C(K) spaces. More precisely, we prove the following cancellation law for separable Banach spaces. Suppose that K₁ and K₃ are finite or countable compact metric spaces of the same cardinality and 1 < p, q < ∞. Then, for any infinite compact metric spaces K₂ and K₄, the following statements are equivalent: (a) $𝓝(ℓ_{p}⊕ C(K₁),ℓ_{q}⊕ C(K₂))$ and $𝓝(ℓ_{p}⊕ C(K₃),ℓ_{q}⊕ C(K₄))$ are isomorphic. (b) C(K₂) is isomorphic to C(K₄).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.