Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We determine upper bounds for $γ(Qn^t)$ and $i(Qₙ^t)$, the domination and independent domination numbers, respectively, of the graph $Qₙ^t$ obtained from the moves of queens on the n×n chessboard drawn on the torus.
EN
A graph G is called a prism fixer if γ(G×K₂) = γ(G), where γ(G) denotes the domination number of G. A symmetric γ-set of G is a minimum dominating set D which admits a partition D = D₁∪ D₂ such that $V(G)-N[D_i] = D_j$, i,j = 1,2, i ≠ j. It is known that G is a prism fixer if and only if G has a symmetric γ-set. Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004), 389-402] conjectured that if G is a connected, bipartite graph such that V(G) can be partitioned into symmetric γ-sets, then G ≅ C₄ or G can be obtained from $K_{2t,2t}$ by removing the edges of t vertex-disjoint 4-cycles. We construct a counterexample to this conjecture and prove an alternative result on the structure of such bipartite graphs.
3
64%
EN
A secure (total) dominating set of a graph G = (V,E) is a (total) dominating set X ⊆ V with the property that for each u ∈ V-X, there exists x ∈ X adjacent to u such that $(X-{x}) ∪ {u}$ is (total) dominating. The smallest cardinality of a secure (total) dominating set is the secure (total) domination number $γ_s(G)(γ_{st}(G))$. We characterize graphs with equal total and secure total domination numbers. We show that if G has minimum degree at least two, then $γ_{st}(G) ≤ γ_s(G)$. We also show that $γ_{st}(G)$ is at most twice the clique covering number of G, and less than three times the independence number. With the exception of the independence number bound, these bounds are sharp.
4
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Paired domination in prisms of graphs

64%
EN
The paired domination number $γ_{pr}(G)$ of a graph G is the smallest cardinality of a dominating set S of G such that ⟨S⟩ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: $γ_{pr}(πG) = 2γ_{pr}(G)$ for all πG; $γ_{pr}(K₂☐ G) = 2γ_{pr}(G)$; $γ_{pr}(K₂☐ G) = γ_{pr}(G)$.
5
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Characterizing Cartesian fixers and multipliers

64%
EN
Let G ☐ H denote the Cartesian product of the graphs G and H. In 2004, Hartnell and Rall [On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24(3) (2004), 389-402] characterized prism fixers, i.e., graphs G for which γ(G ☐ K₂) = γ(G), and noted that γ(G ☐ Kₙ) ≥ min{|V(G)|, γ(G)+n-2}. We call a graph G a consistent fixer if γ(G ☐ Kₙ) = γ(G)+n-2 for each n such that 2 ≤ n < |V(G)|- γ(G)+2, and characterize this class of graphs. Also in 2004, Burger, Mynhardt and Weakley [On the domination number of prisms of graphs, Dicuss. Math. Graph Theory 24(2) (2004), 303-318] characterized prism doublers, i.e., graphs G for which γ(G ☐ K₂) = 2γ(G). In general γ(G ☐ Kₙ) ≤ nγ(G) for any n ≥ 2. We call a graph attaining equality in this bound a Cartesian n-multiplier and also characterize this class of graphs.
6
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

On the domination number of prisms of graphs

51%
EN
For a permutation π of the vertex set of a graph G, the graph π G is obtained from two disjoint copies G₁ and G₂ of G by joining each v in G₁ to π(v) in G₂. Hence if π = 1, then πG = K₂×G, the prism of G. Clearly, γ(G) ≤ γ(πG) ≤ 2 γ(G). We study graphs for which γ(K₂×G) = 2γ(G), those for which γ(πG) = 2γ(G) for at least one permutation π of V(G) and those for which γ(πG) = 2γ(G) for each permutation π of V(G).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.