Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the frame structure of stacker cranes harmful mast vibrations may appear due to the inertial forces of acceleration or the braking movement phase. This effect may reduce the stability and positioning accuracy of these machines. Unfortunately, their dynamic properties also vary with the lifted load magnitude and position. The purpose of the paper is to present a controller design method which can handle the effect of a varying lifted load magnitude and position in a dynamic model and at the same time reveals good reference signal tracking and mast vibration reducing properties. A controller design case study is presented step by step from dynamic modeling through to the validation of the resulting controller. In the paper the dynamic modeling possibilities of single-mast stacker cranes are summarized. The handling of varying dynamical behavior is realized via the polytopic LPV modeling approach. Based on this modeling technique, a gain-scheduled controller design method is proposed, which is suitable for achieving the goals set. Finally, controller validation is presented by means of time domain simulations.
2
Content available remote

LPV design of fault-tolerant control for road vehicles

81%
EN
The aim of the paper is to present a supervisory decentralized architecture for the design and development of reconfigurable and fault-tolerant control systems in road vehicles. The performance specifications are guaranteed by local controllers, while the coordination of these components is provided by a supervisor. Since the monitoring components and FDI filters provide the supervisor with information about the various vehicle maneuvers and the different fault operations, it is able to make decisions about necessary interventions into the vehicle motions and guarantee reconfigurable and fault-tolerant operation of the vehicle. The design of the proposed reconfigurable and fault-tolerant control is based on an LPV method that uses monitored scheduling variables during the operation of the vehicle.
EN
In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant sets of the steering and braking control systems at various velocities and road conditions. Illustration examples show that, depending on the environments, different vehicle dynamic regions can be reached and stabilized by these controllers. The results can be applied to the theoretical basis of their interventions into the vehicle control system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.