Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Convex universal fixers

100%
EN
In [1] Burger and Mynhardt introduced the idea of universal fixers. Let G = (V, E) be a graph with n vertices and G' a copy of G. For a bijective function π: V(G) → V(G'), define the prism πG of G as follows: V(πG) = V(G) ∪ V(G') and $E(πG) = E(G) ∪ E(G') ∪ M_{π}$, where $M_{π} = {u π(u) | u ∈ V(G)}$. Let γ(G) be the domination number of G. If γ(πG) = γ(G) for any bijective function π, then G is called a universal fixer. In [9] it is conjectured that the only universal fixers are the edgeless graphs K̅ₙ. In this work we generalize the concept of universal fixers to the convex universal fixers. In the second section we give a characterization for convex universal fixers (Theorem 6) and finally, we give an in infinite family of convex universal fixers for an arbitrary natural number n ≥ 10.
2
Content available remote

Total Domination Multisubdivision Number of a Graph

81%
EN
The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msdγt (G) of a graph G and we show that for any connected graph G of order at least two, msdγt (G) ≤ 3. We show that for trees the total domination multisubdi- vision number is equal to the known total domination subdivision number. We also determine the total domination multisubdivision number for some classes of graphs and characterize trees T with msdγt (T) = 1.
3
Content available remote

Some Variations of Perfect Graphs

81%
EN
We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) = γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k-path vertex cover number and the distance (k − 1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k ≥ 2. Moreover, we provide a complete characterisation of (ψ2 − γ1)- perfect graphs describing the set of its forbidden induced subgraphs and providing the explicit characterisation of the structure of graphs belonging to this family.
4
Content available remote

Distance 2-Domination in Prisms of Graphs

81%
EN
A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ∊ (V (G) − D) and D is at most two. Let γ2(G) denote the size of a smallest distance 2-dominating set of G. For any permutation π of the vertex set of G, the prism of G with respect to π is the graph πG obtained from G and a copy G′ of G by joining u ∊ V(G) with v′ ∊ V(G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation π of V(G), then G is called a universal γ2-fixer. In this work we characterize the cycles and paths that are universal γ2-fixers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.