Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Global stability analysis and control of leptospirosis

100%
EN
The aim of this paper is to investigate the effectiveness and cost-effectiveness of leptospirosis control measures, preventive vaccination and treatment of infective humans that may curtail the disease transmission. For this, a mathematical model for the transmission dynamics of the disease that includes preventive, vaccination, treatment of infective vectors and humans control measures are considered. Firstly, the constant control parameters’ case is analyzed, also calculate the basic reproduction number and investigate the existence and stability of equilibria. The threshold condition for disease-free equilibrium is found to be locally asymptotically stable and can only be achieved when the basic reproduction number is less than unity. The model is found to exhibit the existence of multiple endemic equilibria. Furthermore, to assess the relative impact of each of the constant control parameters measures the sensitivity index of the basic reproductive number to the model’s parameters are calculated. In the time-dependent constant control case, Pontryagin’s Maximum Principle is used to derive necessary conditions for the optimal control of the disease. The cost-effectiveness analysis is carried out by first of all using ANOVA to check on the mean costs. Then followed by Incremental Cost-Effectiveness Ratio (ICER) for all the possible combinations of the disease control measures. Our results revealed that the most cost-effective strategy for the control of leptospirosis is the combination of the vaccination and treatment of infective livestocks. Though the combinations of all control measures is also effective, however, this strategy is not cost-effective and so too costly. Therefore, more efforts from policy makers on vaccination and treatment of infectives livestocks regime would go a long way to combat the disease epidemic.
2
Content available remote

A new method of proof of Filippov’s theorem based on the viability theorem

84%
EN
Filippov’s theorem implies that, given an absolutely continuous function y: [t 0; T] → ℝd and a set-valued map F(t, x) measurable in t and l(t)-Lipschitz in x, for any initial condition x 0, there exists a solution x(·) to the differential inclusion x′(t) ∈ F(t, x(t)) starting from x 0 at the time t 0 and satisfying the estimation $$\left| {x(t) - y(t)} \right| \leqslant r(t) = \left| {x_0 - y(t_0 )} \right|e^{\int_{t_0 }^t {l(s)ds} } + \int_{t_0 }^t \gamma (s)e^{\int_s^t {l(\tau )d\tau } } ds,$$ where the function γ(·) is the estimation of dist(y′(t), F(t, y(t))) ≤ γ(t). Setting P(t) = {x ∈ ℝn: |x −y(t)| ≤ r(t)}, we may formulate the conclusion in Filippov’s theorem as x(t) ∈ P(t). We calculate the contingent derivative DP(t, x)(1) and verify the tangential condition F(t, x) ∩ DP(t, x)(1) ≠ ø. It allows to obtain Filippov’s theorem from a viability result for tubes.
Open Mathematics
|
2016
|
tom 14
|
nr 1
693-704
EN
Necessary and sufficiently conditions are derived for the decomposition of a second order linear time- varying system into two cascade connected commutative first order linear time-varying subsystems. The explicit formulas describing these subsystems are presented. It is shown that a very small class of systems satisfies the stated conditions. The results are well verified by simulations. It is also shown that its cascade synthesis is less sensitive to numerical errors than the direct simulation of the system itself.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.