Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 24

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
Content available remote

Formal Introduction to Fuzzy Implications

100%
EN
In the article we present in the Mizar system the catalogue of nine basic fuzzy implications, used especially in the theory of fuzzy sets. This work is a continuation of the development of fuzzy sets in Mizar; it could be used to give a variety of more general operations, and also it could be a good starting point towards the formalization of fuzzy logic (together with t-norms and t-conorms, formalized previously).
2
Content available remote

Basic Formal Properties of Triangular Norms and Conorms

100%
EN
In the article we present in the Mizar system [1], [8] the catalogue of triangular norms and conorms, used especially in the theory of fuzzy sets [13]. The name triangular emphasizes the fact that in the framework of probabilistic metric spaces they generalize triangle inequality [2]. After defining corresponding Mizar mode using four attributes, we introduced the following t-norms: minimum t-norm minnorm (Def. 6), product t-norm prodnorm (Def. 8), Łukasiewicz t-norm Lukasiewicz_norm (Def. 10), drastic t-norm drastic_norm (Def. 11), nilpotent minimum nilmin_norm (Def. 12), Hamacher product Hamacher_norm (Def. 13), and corresponding t-conorms: maximum t-conorm maxnorm (Def. 7), probabilistic sum probsum_conorm (Def. 9), bounded sum BoundedSum_conorm (Def. 19), drastic t-conorm drastic_conorm (Def. 14), nilpotent maximum nilmax_conorm (Def. 18), Hamacher t-conorm Hamacher_conorm (Def. 17). Their basic properties and duality are shown; we also proved the predicate of the ordering of norms [10], [9]. It was proven formally that drastic-norm is the pointwise smallest t-norm and minnorm is the pointwise largest t-norm (maxnorm is the pointwise smallest t-conorm and drastic-conorm is the pointwise largest t-conorm). This work is a continuation of the development of fuzzy sets in Mizar [6] started in [11] and [3]; it could be used to give a variety of more general operations on fuzzy sets. Our formalization is much closer to the set theory used within the Mizar Mathematical Library than the development of rough sets [4], the approach which was chosen allows however for merging both theories [5], [7].
3
Content available remote

Topological Interpretation of Rough Sets

100%
EN
Rough sets, developed by Pawlak, are an important model of incomplete or partially known information. In this article, which is essentially a continuation of [11], we characterize rough sets in terms of topological closure and interior, as the approximations have the properties of the Kuratowski operators. We decided to merge topological spaces with tolerance approximation spaces. As a testbed for our developed approach, we restated the results of Isomichi [13] (formalized in Mizar in [14]) and about fourteen sets of Kuratowski [17] (encoded with the help of Mizar adjectives and clusters’ registrations in [1]) in terms of rough approximations. The upper bounds which were 14 and 7 in the original paper of Kuratowski, in our case are six and three, respectively. It turns out that within the classification given by Isomichi, 1st class subsets are precisely crisp sets, 2nd class subsets are proper rough sets, and there are no 3rd class subsets in topological spaces generated by approximations. Also the important results about these spaces is that they are extremally disconnected [15], hence lattices of their domains are Boolean. Furthermore, we develop the theory of abstract spaces equipped with maps possessing characteristic properties of rough approximations which enables us to freely use the notions from the theory of rough sets and topological spaces formalized in the Mizar Mathematical Library [10].
4
Content available remote

Cauchy Mean Theorem

100%
EN
The purpose of this paper was to prove formally, using the Mizar language, Arithmetic Mean/Geometric Mean theorem known maybe better under the name of AM-GM inequality or Cauchy mean theorem. It states that the arithmetic mean of a list of a non-negative real numbers is greater than or equal to the geometric mean of the same list. The formalization was tempting for at least two reasons: one of them, perhaps the strongest, was that the proof of this theorem seemed to be relatively easy to formalize (e.g. the weaker variant of this was proven in [13]). Also Jensen’s inequality is already present in the Mizar Mathematical Library. We were impressed by the beauty and elegance of the simple proof by induction and so we decided to follow this specific way. The proof follows similar lines as that written in Isabelle [18]; the comparison of both could be really interesting as it seems that in both systems the number of lines needed to prove this are really close. This theorem is item #38 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
5
Content available remote

The Formal Construction of Fuzzy Numbers

100%
EN
In this article, we continue the development of the theory of fuzzy sets [23], started with [14] with the future aim to provide the formalization of fuzzy numbers [8] in terms reflecting the current state of the Mizar Mathematical Library. Note that in order to have more usable approach in [14], we revised that article as well; some of the ideas were described in [12]. As we can actually understand fuzzy sets just as their membership functions (via the equality of membership function and their set-theoretic counterpart), all the calculations are much simpler. To test our newly proposed approach, we give the notions of (normal) triangular and trapezoidal fuzzy sets as the examples of concrete fuzzy objects. Also -cuts, the core of a fuzzy set, and normalized fuzzy sets were defined. Main technical obstacle was to prove continuity of the glued maps, and in fact we did this not through its topological counterpart, but extensively reusing properties of the real line (with loss of generality of the approach, though), because we aim at formalizing fuzzy numbers in our future submissions, as well as merging with rough set approach as introduced in [13] and [11]. Our base for formalization was [9] and [10].
6
Content available remote

Formalization of Generalized Almost Distributive Lattices

100%
EN
Almost Distributive Lattices (ADL) are structures defined by Swamy and Rao [14] as a common abstraction of some generalizations of the Boolean algebra. In our paper, we deal with a certain further generalization of ADLs, namely the Generalized Almost Distributive Lattices (GADL). Our main aim was to give the formal counterpart of this structure and we succeeded formalizing all items from the Section 3 of Rao et al.’s paper [13]. Essentially among GADLs we can find structures which are neither V-commutative nor Λ-commutative (resp., Λ-commutative); consequently not all forms of absorption identities hold. We characterized some necessary and sufficient conditions for commutativity and distributivity, we also defined the class of GADLs with zero element. We tried to use as much attributes and cluster registrations as possible, hence many identities are expressed in terms of adjectives; also some generalizations of wellknown notions from lattice theory [11] formalized within the Mizar Mathematical Library were proposed. Finally, some important examples from Rao’s paper were introduced. We construct the example of GADL which is not an ADL. Mechanization of proofs in this specific area could be a good starting point towards further generalization of lattice theory [10] with the help of automated theorem provers [8].
7
Content available remote

Binary Relations-based Rough Sets – an Automated Approach

100%
EN
Rough sets, developed by Zdzisław Pawlak [12], are an important tool to describe the state of incomplete or partially unknown information. In this article, which is essentially the continuation of [8], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library [11]). Here we drop the classical equivalence- and tolerance-based models of rough sets trying to formalize some parts of [18]. The main aim of this Mizar article is to provide a formal counterpart for the rest of the paper of William Zhu [18]. In order to do this, we recall also Theorem 3 from Y.Y. Yao’s paper [17]. The first part of our formalization (covering first seven pages) is contained in [8]. Now we start from page 5003, sec. 3.4. [18]. We formalized almost all numbered items (definitions, propositions, theorems, and corollaries), with the exception of Proposition 7, where we stated our theorem only in terms of singletons. We provided more thorough discussion of the property positive alliance and its connection with seriality and reflexivity (and also transitivity). Examples were not covered as a rule as we tried to construct a more general mechanism of finding appropriate models for approximation spaces in Mizar providing more automatization than it is now [10]. Of course, we can see some more general applications of some registrations of clusters, essentially not dealing with the notion of an approximation: the notions of an alliance binary relation were not defined in the Mizar Mathematical Library before, and we should think about other properties which are also absent but needed in the context of rough approximations [9], [5]. Via theory merging, using mechanisms described in [6] and [7], such elementary constructions can be extended to other frameworks.
8
Content available remote

On Square-Free Numbers

100%
EN
In the article the formal characterization of square-free numbers is shown; in this manner the paper is the continuation of [19]. Essentially, we prepared some lemmas for convenient work with numbers (including the proof that the sequence of prime reciprocals diverges [1]) according to [18] which were absent in the Mizar Mathematical Library. Some of them were expressed in terms of clusters’ registrations, enabling automatization machinery available in the Mizar system. Our main result of the article is in the final section; we proved that the lattice of positive divisors of a positive integer n is Boolean if and only if n is square-free.
9
Content available remote

Stone Lattices

100%
EN
The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the other which is dense. The core of the paper is of course the idea of Stone identity [...] a*⊔a**=T, $$a^* \sqcup a^{**} = {\rm{T}},$$ which is fundamental for us: Stone lattices are those lattices L, which are distributive, bounded, and satisfy Stone identity for all elements a ∈ L. Stone algebras were introduced by Grätzer and Schmidt in [18]. Of course, the pseudocomplement is unique (if exists), so in a pseudcomplemented lattice we defined a * as the Mizar functor (unary operation mapping every element to its pseudocomplement). In Section 2 we prove formally a collection of ordinary properties of pseudocomplemented lattices. All Boolean lattices are Stone, and a natural example of the lattice which is Stone, but not Boolean, is the lattice of all natural divisors of p 2 for arbitrary prime number p (Section 6). At the end we formalize the notion of the Stone lattice B [2] (of pairs of elements a, b of B such that a ⩽ b) constructed as a sublattice of B 2, where B is arbitrary Boolean algebra (and we describe skeleton and the set of dense elements in such lattices). In a natural way, we deal with Cartesian product of pseudocomplemented lattices. Our formalization was inspired by [17], and is an important step in formalizing Jouni Järvinen Lattice theory for rough sets [19], so it follows rather the latter paper. We deal essentially with Section 4.3, pages 423–426. The description of handling complemented structures in Mizar [6] can be found in [12]. The current article together with [15] establishes the formal background for algebraic structures which are important for [10], [16] by means of mechanisms of merging theories as described in [11].
10
Content available remote

Relational Formal Characterization of Rough Sets

100%
EN
The notion of a rough set, developed by Pawlak [10], is an important tool to describe situation of incomplete or partially unknown information. In this article, which is essentially the continuation of [6], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library). Here we drop the classical equivalence- and tolerance-based models of rough sets [12] trying to formalize some parts of [19] following also [18] in some sense (Propositions 1-8, Corr. 1 and 2; the complete description is available in the Mizar script). Our main problem was that informally, there is a direct correspondence between relations and underlying properties, in our approach however [7], which uses relational structures rather than relations, we had to switch between classical (based on pure set theory) and abstract (using the notion of a structure) parts of the Mizar Mathematical Library. Our next step will be translation of these properties into the pure language of Mizar attributes.
11
Content available remote

Polygonal Numbers

100%
EN
In the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = Δ+Δ+Δ”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar language evolved and attributes with arguments were implemented, we decided to extend these lines and we characterized polygonal numbers. We formalized centered polygonal numbers, the connection between triangular and square numbers, and also some equalities involving Mersenne primes and perfect numbers. We gave also explicit formula to obtain from the polygonal number its ordinal index. Also selected congruences modulo 10 were enumerated. Our work basically covers the Wikipedia item for triangular numbers and the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217). An interesting related result [16] could be the proof of Lagrange’s four-square theorem or Fermat’s polygonal number theorem [32].
12
Content available remote

Two Axiomatizations of Nelson Algebras

100%
EN
Nelson algebras were first studied by Rasiowa and Białynicki- Birula [1] under the name N-lattices or quasi-pseudo-Boolean algebras. Later, in investigations by Monteiro and Brignole [3, 4], and [2] the name “Nelson algebras” was adopted - which is now commonly used to show the correspondence with Nelson’s paper [14] on constructive logic with strong negation. By a Nelson algebra we mean an abstract algebra 〈L, T, -, ¬, →, ⇒, ⊔, ⊓〉 where L is the carrier, − is a quasi-complementation (Rasiowa used the sign ~, but in Mizar “−” should be used to follow the approach described in [12] and [10]), ¬ is a weak pseudo-complementation → is weak relative pseudocomplementation and ⇒ is implicative operation. ⊔ and ⊓ are ordinary lattice binary operations of supremum and infimum. In this article we give the definition and basic properties of these algebras according to [16] and [15]. We start with preliminary section on quasi-Boolean algebras (i.e. de Morgan bounded lattices). Later we give the axioms in the form of Mizar adjectives with names corresponding with those in [15]. As our main result we give two axiomatizations (non-equational and equational) and the full formal proof of their equivalence. The second set of equations is rather long but it shows the logical essence of Nelson lattices. This formalization aims at the construction of algebraic model of rough sets [9] in our future submissions. Section 4 contains all items from Th. 1.2 and 1.3 (and the itemization is given in the text). In the fifth section we provide full formal proof of Th. 2.1 p. 75 [16].
13
Content available remote

Prime Filters and Ideals in Distributive Lattices

100%
EN
The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the Mizar Mathematical Library, there are some attempts to formalize prime ideals and filters; one series of articles written as decoding [9] proven some results; we tried however to follow [21], [12], and [13]. All three were devoted to the Stone representation theorem [18] for Boolean or Heyting lattices. The main aim of the present article was to bridge this gap between general distributive lattices and Boolean algebras, having in mind that the more general approach will eventually replace the common proof of aforementioned articles.1 Because in Boolean algebras the notions of ultrafilters, prime filters and maximal filters coincide, we decided to construct some concrete examples of ultrafilters in nontrivial Boolean lattice. We proved also the Prime Ideal Theorem not as BPI (Boolean Prime Ideal), but in the more general setting. In the final section we present Nachbin theorems [15],[1] expressed both in terms of maximal and prime filters and as the unordered spectra of a lattice [11], [10]. This shows that if the notion of maximal and prime filters coincide in the lattice, it is Boolean.
14
Content available remote

Introduction to Liouville Numbers

64%
EN
The article defines Liouville numbers, originally introduced by Joseph Liouville in 1844 [17] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and [...] It is easy to show that all Liouville numbers are irrational. Liouville constant, which is also defined formally, is the first transcendental (not algebraic) number. It is defined in Section 6 quite generally as the sum [...] for a finite sequence {ak}k∈ℕ and b ∈ ℕ. Based on this definition, we also introduced the so-called Liouville number as [...] substituting in the definition of L(ak, b) the constant sequence of 1’s and b = 10. Another important examples of transcendental numbers are e and π [7], [13], [6]. At the end, we show that the construction of an arbitrary Lioville constant satisfies the properties of a Liouville number [12], [1]. We show additionally, that the set of all Liouville numbers is infinite, opening the next item from Abad and Abad’s list of “Top 100 Theorems”. We show also some preliminary constructions linking real sequences and finite sequences, where summing formulas are involved. In the Mizar [14] proof, we follow closely https://en.wikipedia.org/wiki/Liouville_number. The aim is to show that all Liouville numbers are transcendental.
15
Content available remote

Orthomodular Lattices

64%
EN
The main result of the article is the solution to the problem of short axiomatizations of orthomodular ortholattices. Based on EQP/Otter results [10], we gave a set of three equations which is equivalent to the classical, much longer equational basis of such a class. Also the basic example of the lattice which is not orthomodular, i.e. benzene (or B6) is defined in two settings - as a relational structure (poset) and as a lattice.As a preliminary work, we present the proofs of the dependence of other axiomatizations of ortholattices. The formalization of the properties of orthomodular lattices follows [4].
16
Content available remote

On the Properties of the Möbius Function

64%
EN
We formalized some basic properties of the Möbius function which is defined classically as [...] as e.g., its multiplicativity. To enable smooth reasoning about the sum of this number-theoretic function, we introduced an underlying many-sorted set indexed by the set of natural numbers. Its elements are just values of the Möbius function.The second part of the paper is devoted to the notion of the radical of number, i.e. the product of its all prime factors.The formalization (which is very much like the one developed in Isabelle proof assistant connected with Avigad's formal proof of Prime Number Theorem) was done according to the book [13].
17
Content available remote

On the Permanent of a Matrix

64%
EN
We introduce the notion of a permanent [13] of a square matrix. It is a notion somewhat related to a determinant, so we follow closely the approach and theorems already introduced in the Mizar Mathematical Library for the determinant. Unfortunately, the formalization of the latter notion is at its early stage, so we had to prove many very elementary auxiliary facts.
18
Content available remote

Preface

64%
19
Content available remote

Tarski Geometry Axioms – Part II

64%
EN
In our earlier article [12], the first part of axioms of geometry proposed by Alfred Tarski [14] was formally introduced by means of Mizar proof assistant [9]. We defined a structure TarskiPlane with the following predicates: of betweenness between (a ternary relation), of congruence of segments equiv (quarternary relation), which satisfy the following properties: congruence symmetry (A1), congruence equivalence relation (A2), congruence identity (A3), segment construction (A4), SAS (A5), betweenness identity (A6), Pasch (A7). Also a simple model, which satisfies these axioms, was previously constructed, and described in [6]. In this paper, we deal with four remaining axioms, namely: the lower dimension axiom (A8), the upper dimension axiom (A9), the Euclid axiom (A10), the continuity axiom (A11). They were introduced in the form of Mizar attributes. Additionally, the relation of congruence of triangles cong is introduced via congruence of sides (SSS). In order to show that the structure which satisfies all eleven Tarski’s axioms really exists, we provided a proof of the registration of a cluster that the Euclidean plane, or rather a natural [5] extension of ordinary metric structure Euclid 2 satisfies all these attributes. Although the tradition of the mechanization of Tarski’s geometry in Mizar is not as long as in Coq [11], first approaches to this topic were done in Mizar in 1990 [16] (even if this article started formal Hilbert axiomatization of geometry, and parallel development was rather unlikely at that time [8]). Connection with another proof assistant should be mentioned – we had some doubts about the proof of the Euclid’s axiom and inspection of the proof taken from Archive of Formal Proofs of Isabelle [10] clarified things a bit. Our development allows for the future faithful mechanization of [13] and opens the possibility of automatically generated Prover9 proofs which was useful in the case of lattice theory [7].
20
Content available remote

On the Lattice of Intervals and Rough Sets

64%
EN
Rough sets, developed by Pawlak [6], are an important tool to describe a situation of incomplete or partially unknown information. One of the algebraic models deals with the pair of the upper and the lower approximation. Although usually the tolerance or the equivalence relation is taken into account when considering a rough set, here we rather concentrate on the model with the pair of two definable sets, hence we are close to the notion of an interval set. In this article, the lattices of rough sets and intervals are formalized. This paper, being essentially the continuation of [3], is also a step towards the formalization of the algebraic theory of rough sets, as in [4] or [9].
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.