Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Relation modules of infinite groups, II

100%
Open Mathematics
|
2014
|
tom 12
|
nr 3
436-444
EN
Let F n denote the free group of rank n and d(G) the minimal number of generators of the finitely generated group G. Suppose that R ↪ F m ↠ G and S ↪ F m ↠ G are presentations of G and let $$\bar R$$ and $$\bar S$$ denote the associated relation modules of G. It is well known that $$\bar R \oplus (\mathbb{Z}G)^{d(G)} \cong \bar S \oplus (\mathbb{Z}G)^{d(G)}$$ even though it is quite possible that . However, to the best of the author’s knowledge no examples have appeared in the literature with the property that . Our purpose here is to exhibit, for each integer k ≥ 1, a group G that has presentations as above such that . Our approach depends on the existence of nonfree stably free modules over certain commutative rings and, in particular, on the existence of certain Hurwitz-Radon systems of matrices with integer entries discovered by Geramita and Pullman. This approach was motivated by results of Adams concerning the number of orthonormal (continuous) vector fields on spheres.
2
Content available remote

On non-Hopfian groups of fractions

81%
EN
The group of fractions of a semigroup S, if exists, can be written as G = SS−1. If S is abelian, then G must be abelian. We say that a semigroup identity is transferable if being satisfied in S it must be satisfied in G = SS−1. One of problems posed by G.Bergman in 1981 asks whether the group G must satisfy every semigroup identity which is satisfied in S, that is whether every semigroup identity is transferable. The first non-transferable identities were constructed in 2005 by S.V.Ivanov and A.M. Storozhev. A group G is called Hopfian if each epimorphizm G → G is the automorphism. The residually finite groups are Hopfian, however there are many problems concerning the Hopfian property e.g. of infinite Burnside groups, of finitely generated relatively free groups [11, Problem 15]. We prove here that if G = SS−1 is an n-generator group of fractions of a relatively free semigroup S, satisfying m-variable (m < n) non-transferable identity, then G is the non-Hopfian group.
3
Content available remote

The group Sp10(ℤ) is (2,3)-generated

81%
EN
It is proved that the group Sp10(ℤ) is generated by an involution and an element of order 3.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.