Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
The aim of this paper is to construct open sets with good quotients by an action of a reductive group starting with a given family of sets with good quotients. In particular, in the case of a smooth projective variety X with Pic(X) = 𝒵, we show that all open sets with good quotients that embed in a toric variety can be obtained from the family of open sets with projective good quotients. Our method applies in particular to the case of Grassmannians.
2
Content available remote

Quotients of toric varieties by actions of subtori

100%
EN
Let X be an algebraic toric variety with respect to an action of an algebraic torus S. Let Σ be the corresponding fan. The aim of this paper is to investigate open subsets of X with a good quotient by the (induced) action of a subtorus T ⊂ S. It turns out that it is enough to consider open S-invariant subsets of X with a good quotient by T. These subsets can be described by subfans of Σ. We give a description of such subfans and also a description of fans corresponding to quotient varieties. Moreover, we give conditions for a subfan to define an open subset with a complete quotient space.
3
Content available remote

On complete orbit spaces of SL(2) actions, II

63%
EN
The aim of this paper is to extend the results of [BB-Ś2] concerning geometric quotients of actions of SL(2) to the case of good quotients. Thus the results of the present paper can be applied to any action of SL(2) on a complete smooth algebraic variety, while the theorems proved in [BB-Ś2] concerned only special situations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.