Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Repeat distributions from unequal crossovers

100%
EN
It is a well-known fact that genetic sequences may contain sections with repeated units, called repeats, that differ in length over a population, with a length distribution of geometric type. A simple class of recombination models with single crossovers is analysed that result in equilibrium distributions of this type. Due to the nonlinear and infinite-dimensional nature of these models, their analysis requires some nontrivial tools from measure theory and functional analysis, which makes them interesting also from a mathematical point of view. In particular, they can be viewed as quadratic, hence nonlinear, analogues of Markov chains.
2
Content available remote

Well-rounded sublattices of planar lattices

51%
EN
A lattice in Euclidean d-space is called well-rounded if it contains d linearly independent vectors of minimal length. This class of lattices is important for various questions, including sphere packing or homology computations. The task of enumerating well-rounded sublattices of a given lattice is of interest already in dimension 2, and has recently been treated by several authors. In this paper, we analyse the question more closely in the spirit of earlier work on similar sublattices and coincidence site sublattices. Combining explicit geometric considerations with known techniques from the theory of Dirichlet series, we arrive, after a considerable amount of computation, at asymptotic results on the number of well-rounded sublattices up to a given index in any planar lattice. For the two most symmetric lattices, the square and the hexagonal lattice, we present detailed results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.