Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 36 | 3 | 603-619

Tytuł artykułu

On the Weight of Minor Faces in Triangle-Free 3-Polytopes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The weight w(f) of a face f in a 3-polytope is the degree-sum of vertices incident with f. It follows from Lebesgue’s results of 1940 that every triangle-free 3-polytope without 4-faces incident with at least three 3-vertices has a 4-face with w ≤ 21 or a 5-face with w ≤ 17. Here, the bound 17 is sharp, but it was still unknown whether 21 is sharp. The purpose of this paper is to improve this 21 to 20, which is best possible.

Wydawca

Rocznik

Tom

36

Numer

3

Strony

603-619

Opis fizyczny

Daty

wydano
2016-08-01
otrzymano
2014-11-27
poprawiono
2015-09-21
zaakceptowano
2015-09-29
online
2016-07-06

Twórcy

  • Institute of Mathematics Siberian Branch Russian Academy of Sciences, Novosibirsk, 630090, Russia
  • Ammosov North-Eastern Federal University Yakutsk, 677000, Russia

Bibliografia

  • [1] S.V. Avgustinovich and O.V. Borodin, Neighborhoods of edges in normal maps, Diskretn. Anal. Issled. Oper. 2 (1995) 3-9, in Russian.
  • [2] O.V. Borodin, Solution of Kotzig’s and Grünbaum’s problems on the separability of a cycle in a planar graph, Mat. Zametki 46 (1989) 9-12, in Russian.
  • [3] O.V. Borodin, Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps, Diskret. Mat. 3 (1991) 24-27, in Russian.
  • [4] O.V. Borodin, Minimal weight of a face in plane triangulations without 4-vertices, Mat. Zametki 51 (1992) 16-19, in Russian.
  • [5] O.V. Borodin, Triangulated 3-polytopes with restricted minimal weight of faces, Discrete Math. 186 (1998) 281-285. doi:10.1016/S0012-365X(97)00240-9[Crossref]
  • [6] O.V. Borodin and D.V. Loparev, The height of small faces in planar normal maps, Diskretn. Anal. Issled. Oper. 5 (1998) 6-17, in Russian.
  • [7] O.V. Borodin and D.R. Woodall, The weight of faces in plane maps, Mat. Zametki 64 (1998) 648-657, in Russian.
  • [8] O.V. Borodin and D.R. Woodall, Cyclic degrees of 3-polytopes, Graphs Combin. 15 (1999) 267-277.[Crossref]
  • [9] O.V. Borodin, An improvement of Lebesgue’s theorem on the structure of minor faces of 3-polytopes, Diskretn. Anal. Issled. Oper. 9 (2002) 29-39, in Russian.
  • [10] O.V. Borodin, Colorings of plane graphs: a survey, Discrete Math. 313 (2013) 517-539. doi:10.1016/j.disc.2012.11.011[Crossref]
  • [11] O.V. Borodin and A.O. Ivanova, Describing 3-faces in normal plane maps with minimum degree 4, Discrete Math. 313 (2013) 2841-2847. doi:10.1016/j.disc.2013.08.028[Crossref][WoS]
  • [12] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Describing faces in plane triangulations, Discrete Math. 319 (2014) 47-61. doi:10.1016/j.disc.2013.11.021[WoS][Crossref]
  • [13] O.V. Borodin, A.O. Ivanova and D.R. Woodall, Light C4 and C5 in 3-polytopes with minimum degree 5, Discrete Math. 334 (2014) 63-69. doi:10.1016/j.disc.2014.06.024[Crossref]
  • [14] O.V. Borodin, A.O. Ivanova and A.V. Kostochka, Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11, Discrete Math. 315-316 (2014) 128-134. doi:10.1016/j.disc.2013.10.021[Crossref]
  • [15] O.V. Borodin and A.O. Ivanova, The vertex-face weight of edges in 3-polytopes, Sibirsk. Mat. Zh. 56 (2015) 338-350, in Russian.[WoS]
  • [16] O.V. Borodin and A.O. Ivanova, Every 3-polytope with minimum degree 5 has a 7-cycle with maximum degree at most 15, Sibirsk. Mat. Zh. 56 (2015) 775-789, in Russian.
  • [17] B. Ferencová and T. Madaras, On the structure of polyhedral graphs with prescribed edge and dual edge weight , Acta Univ. M. Belii Ser. Math. 12 (2005) 13-18.
  • [18] B. Ferencová and T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight , Discrete Math. 310 (2010) 1661-1675. doi:10.1016/j.disc.2009.11.027[WoS][Crossref]
  • [19] B. Grünbaum, Polytopal graphs, in: Studies in Graph Theory, D.R. Fulkerson, Ed., MAA Studies in Mathematics 12 (1975) 201-224.
  • [20] M. Horňák and S. Jendroľ, Unavoidable sets of face types for planar maps, Discuss. Math. Graph Theory 16 (1996) 123-142. doi:10.7151/dmgt.1028[Crossref]
  • [21] S. Jendroľ, Triangles with restricted degrees of their boundary vertices in plane triangulations, Discrete Math. 196 (1999) 177-196. doi:10.1016/S0012-365X(98)00172-1[Crossref]
  • [22] S. Jendroľ and H.-J. Voss, Light subgraphs of graphs embedded in the plane and in the projective plane-a survey, Discrete Math. 313 (2013) 406-421. doi:10.1016/j.disc.2012.11.007[Crossref][WoS]
  • [23] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat.-Fyz. Čas. 5 (1955) 101-113, in Russian.
  • [24] A. Kotzig, From the theory of Eulerian polyhedra, Mat. Čas. 13 (1963) 20-34.
  • [25] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.
  • [26] H. Lebesgue, Quelques conséquences simples de la formule d’Euler , J. Math. Pures Appl. 19 (1940) 27-43.
  • [27] T. Madaras and R. Škrekovski, Heavy paths, light stars, and big melons, Discrete Math. 286 (2004) 115-131. doi:10.1016/j.disc.2013.11.052[Crossref]
  • [28] T. Madaras and R. Soták, The 10-cycle C10 is light in the family of all plane triangulations with minimum degree five, Tatra Mt. Math. Publ. 18 (1999) 35-56.
  • [29] T. Madaras, R. Škrekovski and H.-J. Voss, The 7-cycle C7 is light in the family of planar graphs with minimum degree 5, Discrete Math. 307 (2007) 1430-1435. doi:10.1016/j.disc.2005.11.080[Crossref]
  • [30] B.Mohar, R. Škrekovski and H.-J. Voss, Light subraphs in planar graphs of minimum degree 4 and edge-degree 9, J. Graph Theory 44 (2003) 261-295. doi:10.1002/jgt.10144[Crossref]
  • [31] O. Ore and M.D. Plummer, Cyclic coloration of plane graphs, Recent Progress in Combinatorics, W.T. Tutte, Ed. (Academic Press, New York, 1969) 287-293.
  • [32] M.D. Plummer, On the cyclic connectivity of planar graph, Graph Theory and Application (Springer-Verlag, Berlin, 1972) 235-242.
  • [33] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515. doi:10.1002/jgt.3190110407 [Crossref]
  • [34] E. Steinitz, Polyheder und Raumeinteilungen, Enzykl. Math. Wiss. (Geometrie) 3AB (1922) 1-139.
  • [35] P. Wernicke, Über den Kartographischen Vierfarbensatz , Math. Ann. 58 (1904) 413-426.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.doi-10_7151_dmgt_1877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.