Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1998 | 131 | 3 | 253-270

Tytuł artykułu

Riesz means of Fourier transforms and Fourier series on Hardy spaces

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from $H_p(ℝ)$ to $L_p(ℝ)$ (1/(α+1) < p < ∞) and is of weak type (1,1), where $H_p(ℝ)$ is the classical Hardy space. As a consequence we deduce that the Riesz means of a function $⨍ ∈ L_1(ℝ)$ converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on $H_p(ℝ)$ whenever 1/(α+1) < p < ∞. Thus, in case $⨍ ∈ H_p(ℝ)$, the Riesz means converge to ⨍ in $H_p(ℝ)$ norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.

Twórcy

autor
  • Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Bibliografia

  • [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
  • [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
  • [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class $H^p$, Trans. Amer. Math. Soc. 157 (1971), 137-153.
  • [4] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.
  • [5] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between $H^p$ spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
  • [6] C. Fefferman and E. M. Stein, $H^p$ spaces of several variables, Acta Math. 129 (1972), 137-193.
  • [7] B. S. Kashin and A. A. Saakjan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc., 1989.
  • [8] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
  • [9] F. Móricz, The maximal Fejér operator on the spaces $H^1$ and $L^1$, in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 275-292.
  • [10] N. M. Rivière and Y. Sagher, Interpolation between $L^∞$ and $H^1$, the real method, J. Funct. Anal. 14 (1973), 401-409.
  • [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  • [12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
  • [13] F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133.
  • [14] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  • [15] F. Weisz, The maximal Fejér operator of Fourier transforms on Hardy spaces, Acta Sci. Math. (Szeged), to appear.
  • [16] N. Wiener, The Fourier Integral and Certain of Its Applications, Dover, New York, 1959.
  • [17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv131i3p253bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.