The paper studies spectral sets of elements of Banach algebras as the zeros of holomorphic functions and describes them in terms of existence of idempotents. A new decomposition theorem characterizing spectral sets is obtained for bounded linear operators.
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia
Bibliografia
[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
[2] H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
[3] N. Dunford, Spectral theory I. Convergence to projections, Trans. Amer. Math. Soc. 54 (1943), 185-217.
[4] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.
[5] J. E. Galé, Weakly compact homomorphisms and semigroups in Banach algebras, J. London Math. Soc. 45 (1992), 113-125.
[6] H. Heuser, Functional Analysis, Wiley, New York, 1982.
[7] M. A. Kaashoek and T. T. West, Locally Compact Semi-Algebras with Applications to Spectral Theory of Positive Operators, North-Holland Math. Stud. 9, North-Holland, Amsterdam, 1974.
[8] J. J. Koliha, Convergence of an operator series, Aequationes Math. 16 (1977), 31-35.
[9] J. J. Koliha, Isolated spectral points, Proc. Amer. Math. Soc. 124 (1996), 3417-3424.
[10] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175.
[11] M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
[12] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, ibid. 117 (1993), 715-719.
[13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv123i2p97bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.