Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 18 | 4 | 497-512

Tytuł artykułu

A method for sensor placement taking into account diagnosability criteria

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper presents a new approach to sensor placement based on diagnosability criteria. It is based on the study of structural matrices. Properties of structural matrices regarding detectability, discriminability and diagnosability are established in order to be used by sensor placement methods. The proposed approach manages any number of constraints modelled by linear or nonlinear equations and it does not require the design of analytical redundancy relations. Assuming that a constraint models a component and that the cost of the measurement of each variable is defined, a method determining sensor placements satisfying diagnosability specifications, where all the diagnosable, discriminable and detectable constraint sets are specified, is proposed. An application example dealing with a dynamical linear system is presented.

Rocznik

Tom

18

Numer

4

Strony

497-512

Opis fizyczny

Daty

wydano
2008
otrzymano
2007-12-02
poprawiono
2008-05-14

Twórcy

  • Grenoble - Science pour la Conception, l'Optimisation et la Production, G-SCOP lab, Grenoble Institute of Technology, BP 46, Saint Martin d'Heres 38402, France
  • Grenoble - Science pour la Conception, l'Optimisation et la Production, G-SCOP lab, Grenoble Institute of Technology, BP 46, Saint Martin d'Heres 38402, France
  • Grenoble - Science pour la Conception, l'Optimisation et la Production, G-SCOP lab, Grenoble Institute of Technology, BP 46, Saint Martin d'Heres 38402, France

Bibliografia

  • Apt K. (2003). Principles of Constraint Programming, Cambridge University Press, Amsterdam, The Netherlands.
  • Blanke M., Kinnaert M., Lunze J. and Staroswiecki, M. (2006). Diagnosis and Fault-tolerant Control, Springer-Verlag, Berlin/Heidelberg.
  • Bollobás B. (1998). Modern Graph Theory, Springer, New York, NY.
  • Chittaro L. and Ranon R. (2004). Hierarchical model-based diagnosis based on structural abstraction, Artificial Intelligence 155(1-2): 147-182.
  • Commault C., Dion J.-M. and Yacoub Agha S. (2006). Structural analysis for the sensor location problem in fault detection and isolation, Proceedings of the IFAC Symposium SAFEPROCESS'2006, Beijing, China, CD-ROM.
  • Console L., Picardi C. and Ribando M. (2000). Diagnosis and diagnosability analysis using process algebra, Proceedings of the 11th International Workshop on Principles of Diagnosis DX'2000, Morelia, Mexico.
  • Cordier M.-O., Dague P., Lévy F., Dumas M., Montmain J., Staroswiecki, M. and Travé-Massuyès, L. (2000). A comparative analysis of AI and control theory approaches to model-based diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS 2000, Budapest, Hungary, pp. 329-334.
  • Dalton T., Klotzek P. and Frank P. (1999). Application of sensitivity theory to fuzzy logic based FDI, International Journal of Applied Mathematics and Computer Science 9(3): 619-636.
  • de Kleer J. and Williams B. C. (1992). Diagnosis with behavioral modes, in (W. Hamscher, L. Console and J. de Kleer, Eds.), Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 124-130.
  • Dulmage A. L. and Mendelsohn N. S. (1959). A structure theory of bi-partite graphs of finite exterior extension, Transactions of the Royal Society of Canada 53(III): 1-13.
  • Frisk E. and Krysander M. (2007). Sensor placement for maximum fault isolability, Proceedings of the 18th International Workshop on Principles of Diagnosis (DX-07), Nashville, TN, USA.
  • Hamscher W., Console L. and De Kleer J. (1992). Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA.
  • Korbicz J., Patan K. and Obuchowicz A. (1999). Dynamic neural networks for process modelling in fault detection and isolation, International Journal of Applied Mathematics and Computer Science 9(3): 519-546.
  • Koscielny J., Syfert M. and Bartys M. (1999). Fuzzy logic faut diagnosis of industrial process actuators, International Journal of Applied Mathematics and Computer Science 9(3): 653-666.
  • Krysander M., Aslund J. and Nyberg M. (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man and Cybernetics, Part A 38(1): 197-206.
  • Lopez-Toribio C., Patton R. and Uppal F. (1999). Artificial intelligence approaches to fault diagnosis for dynamic systems, International Journal of Applied Mathematics and Computer Science 9(3): 471-518.
  • Madron F. and Veverka V. (1992). Optimal selection of measuring points in complex plants by linear models, AIChE Journal 38(2): 227-236.
  • Maquin D., Luong M. and Ragot J. (1997). Fault detection and isolation and sensor network design, European Journal of Automation 31(2): 393-406.
  • Nyberg M. and Krysander M. (2003). Combining AI, FDI, and statistical hypothesis-testing in a framework for diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS'03, Washington, DC, USA, pp. 813-818.
  • Ploix S., Désinde M. and Touaf S. (2005). Automatic design of detection tests in complex dynamic systems, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic.
  • Ploix S., Touaf S. and Flaus J. M. (2003). A logical framework for isolation in fault diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS'2003, Washington, DC, USA.
  • Pothen A. and Chin-Ju F. (1990). Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software 16(4): 303-324.
  • Pulido B. and Alonso C. (2002). Possible conflicts, arrs, and conflicts, Proceedings of the 13th International Workshop on Principles of Diagnosis (DX02), Semmering, Austria, pp. 122-128.
  • Shumsky A. (2007). Redundancy relations for fault diagnosis in nonlinear uncertain systems, International Journal of Applied Mathematics and Computer Science 17(4): 477-489.
  • Struss P. (1992). What's in SD? Towards a theory of modeling for diagnosis, in (W. Hamscher, L. Console and J. de Kleer, Eds.), Readings in model-based diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 419-449.
  • Struss P., Rehfus B., Brignolo R., Cascio F., Console L., Dague P., Dubois P., Dressler O. and Millet D. (2002). Modelbased tools for the integration of design and diagnosis into a common process - A project report, Proceedings of the International Workshop on Principles of Diagnosis DX'02, Semmering, Austria, pp. 25-32.
  • Travé-Massuyès L., Escobet T. and Milne R. (2001). Modelbased diagnosability and sensor placement application to a frame 6 gas turbine subsystem, Proceedings of the 12th International Workshop on Principles of Diagnosis, Sansicario, Via Lattea, Italy, pp. 205-212.
  • Witczak M. (2006). Advances in model-based fault diagnosis with evolutionary algorithms and neural networks, International Journal of Applied Mathematics and Computer Science 16(1): 85-99.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv18i4p497bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.