Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  system identification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Recursive identification of Wiener systems

100%
EN
A Wiener system, i.e. a cascade system consisting of a linear dynamic subsystem and a nonlinear memoryless subsystem is identified. The a priori information is nonparametric, i.e. neither the functional form of the nonlinear characteristic nor the order of the dynamic part are known. Both the input signal and the disturbance are Gaussian white random processes. Recursive algorithms to estimate the nonlinear characteristic are proposed and their convergence is shown. Results of numerical simulation are also given. A known algorithm recovering the impulse response of the dynamic part is presented in a recursive form.
2
Content available remote

Linear-wavelet networks

100%
EN
This paper proposes a nonlinear regression structure comprising a wavelet network and a linear term. The introduction of the linear term is aimed at providing a more parsimonious interpolation in high-dimensional spaces when the modelling samples are sparse. A constructive procedure for building such structures, termed linear-wavelet networks, is described. For illustration, the proposed procedure is employed in the framework of dynamic system identification. In an example involving a simulated fermentation process, it is shown that a linear-wavelet network yields a smaller approximation error when compared with a wavelet network with the same number of regressors. The proposed technique is also applied to the identification of a pressure plant from experimental data. In this case, the results show that the introduction of wavelets considerably improves the prediction ability of a linear model. Standard errors on the estimated model coefficients are also calculated to assess the numerical conditioning of the identification process.
3
Content available remote

Estimation of feedwater heater parameters based on a grey-box approach

88%
EN
The first-principle modeling of a feedwater heater operating in a coal-fired power unit is presented, along with a theoretical discussion concerning its structural simplifications, parameter estimation, and dynamical validation. The model is a part of the component library of modeling environments, called the Virtual Power Plant (VPP). The main purpose of the VPP is simulation of power generation installations intended for early warning diagnostic applications. The model was developed in the Matlab/Simulink package. There are two common problems associated with the modeling of dynamic systems. If an analytical model is chosen, it is very costly to determine all model parameters and that often prevents this approach from being used. If a data model is chosen, one does not have a clear interpretation of the model parameters. The paper uses the so-called grey-box approach, which combines first-principle and data-driven models. The model is represented by nonlinear state-space equations with geometrical and physical parameters deduced from the available documentation of a feedwater heater, as well as adjustable phenomenological parameters (i.e., heat transfer coefficients) that are estimated from measurement data. The paper presents the background of the method, its implementation in the Matlab/Simulink environment, the results of parameter estimation, and a discussion concerning the accuracy of the method.
EN
Iterative learning and repetitive control aim to eliminate the effect of unwanted disturbances over repeated trials or cycles. The disturbance-free system model, if known, can be used in a model-based iterative learning or repetitive control system to eliminate the unwanted disturbances. In the case of periodic disturbances, although the unknown disturbance frequencies may be the same from trial to trial, the disturbance amplitudes, phases, and biases do not necessarily repeat. Furthermore, the system may not return to the same initial state at the end of each trial before starting the next trial. In spite of these constraints, this paper shows how to identify the system disturbance-free dynamics from disturbance-corrupted input-output data collected over multiple trials without having to measure the disturbances directly. The system disturbance-free model can then be used to identify the disturbances as well, for use in learning or repetitive control. This paper represents the first extension of the interaction matrix approach to the multiple-trial environment of iterative learning control.
5
Content available remote

Nonparametric instrumental variables for identification of block-oriented systems

75%
EN
A combined, parametric-nonparametric identification algorithm for a special case of NARMAX systems is proposed. The parameters of individual blocks are aggregated in one matrix (including mixed products of parameters). The matrix is estimated by an instrumental variables technique with the instruments generated by a nonparametric kernel method. Finally, the result is decomposed to obtain parameters of the system elements. The consistency of the proposed estimate is proved and the rate of convergence is analyzed. Also, the form of optimal instrumental variables is established and the method of their approximate generation is proposed. The idea of nonparametric generation of instrumental variables guarantees that the I.V. estimate is well defined, improves the behaviour of the least-squares method and allows reducing the estimation error. The method is simple in implementation and robust to the correlated noise.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.