Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

Ograniczanie wyników

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  Separating co-ordinates
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

The degenerate C. Neumann system I: symmetry reduction and convexity

100%
EN
The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T*S n/G into ℝ3ℓ+3. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus ℓ. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.