Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  PST-group
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

On a class of finite solvable groups

100%
EN
A finite solvable group G is called an X-group if the subnormal subgroups of G permute with all the system normalizers of G. It is our purpose here to determine some of the properties of X-groups. Subgroups and quotient groups of X-groups are X-groups. Let M and N be normal subgroups of a group G of relatively prime order. If G/M and G/N are X-groups, then G is also an X-group. Let the nilpotent residual L of G be abelian. Then G is an X-group if and only if G acts by conjugation on L as a group of power automorphisms.
2
Content available remote

Subnormal, permutable, and embedded subgroups in finite groups

88%
EN
The purpose of this paper is to study the subgroup embedding properties of S-semipermutability, semipermutability, and seminormality. Here we say H is S-semipermutable (resp. semipermutable) in a group Gif H permutes which each Sylow subgroup (resp. subgroup) of G whose order is relatively prime to that of H. We say H is seminormal in a group G if H is normalized by subgroups of G whose order is relatively prime to that of H. In particular, we establish that a seminormal p-subgroup is subnormal. We also establish that the solvable groups in which S-permutability is a transitive relation are precisely the groups in which the subnormal subgroups are all S-semipermutable. Local characterizations of this result are also established.
3
Content available remote

Erratum to: “Subnormal, permutable, and embedded subgroups in finite groups”

88%
EN
The original version of the article was published in Central European Journal of Mathematics, 2011, 9(4), 915–921, DOI: 10.2478/s11533-011-0029-8. Unfortunately, the original version of this article contains a mistake: Lemma 2.1 (2) is not true. We correct Lemma 2.2 (2) and Theorem 1.1 in our paper where this lemma was used.
4
Content available remote

Algorithms for permutability in finite groups

63%
EN
In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.