Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Open Mathematics
|
2013
|
tom 11
|
nr 1
74-84
EN
We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
2
Content available remote

Some problems on narrow operators on function spaces

100%
EN
It is known that if a rearrangement invariant (r.i.) space E on [0, 1] has an unconditional basis then every linear bounded operator on E is a sum of two narrow operators. On the other hand, for the classical space E = L 1[0, 1] having no unconditional basis the sum of two narrow operators is a narrow operator. We show that a Köthe space on [0, 1] having “lots” of nonnarrow operators that are sum of two narrow operators need not have an unconditional basis. However, we do not know if such an r.i. space exists. Another result establishes sufficient conditions on an r.i. space E under which the orthogonal projection onto the closed linear span of the Rademacher system is a hereditarily narrow operator. This, in particular, answers a question of the first named author and Randrianantoanina (Problem 11.9 in [Popov M., Randrianantoanina B., Narrow Operators on Function Spaces and Vector Lattices, de Gruyter Stud. Math., 45, Walter de Gruyter, Berlin, 2013]).
3
Content available remote

On order structure and operators in L ∞(μ)

100%
EN
It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.
4
Content available remote

On isomorphisms of some Köthe function F-spaces

100%
EN
We prove that if Köthe F-spaces X and Y on finite atomless measure spaces (ΩX; ΣX, µX) and (ΩY; ΣY; µY), respectively, with absolute continuous norms are isomorphic and have the property $\mathop {\lim }\limits_{\mu (A) \to 0} \left\| {\mu (A)^{ - 1} 1_A } \right\| = 0$ (for µ = µX and µ = µY, respectively) then the measure spaces (ΩX; ΣX; µX) and (ΩY; ΣY; µY) are isomorphic, up to some positive multiples. This theorem extends a result of A. Plichko and M. Popov concerning isomorphic classification of L p(µ)-spaces for 0 < p < 1. We also provide a new class of F-spaces having no nonzero separable quotient space.
5
Artykuł dostępny w postaci pełnego tekstu - kliknij by otworzyć plik
Content available

Properties of two variables Toeplitz type operators

100%
EN
The investigation of properties of generalized Toeplitz operators with respect to the pairs of doubly commuting contractions (the abstract analogue of classical two variable Toeplitz operators) is proceeded. We especially concentrate on the condition of existence such a non-zero operator. There are also presented conditions of analyticity of such an operator.
6
Content available remote

Boundary vs. interior conditions associated with weighted composition operators

100%
EN
Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk $$\mathbb{D}$$, we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior $$\mathbb{D}$$ and on the boundary $$\partial \mathbb{D}$$ respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
EN
We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.
8
76%
Open Mathematics
|
2011
|
tom 9
|
nr 4
789-796
EN
In this paper we describe the structure of surjective isometries of the spaces of all absolutely continuous, singular, or discrete probability distribution functions on R equipped with the Kolmogorov-Smirnov metric. We also study the structure of affine automorphisms of the space of all distribution functions.
9
Content available remote

Explicit rational solutions of Knizhnik-Zamolodchikov equation

76%
Open Mathematics
|
2008
|
tom 6
|
nr 1
179-187
EN
We consider the Knizhnik-Zamolodchikov system of linear differential equations. The coefficients of this system are rational functions generated by elements of the symmetric group $$ \mathcal{S}_n $$ n. We assume that parameter ρ = ±1. In previous paper [5] we proved that the fundamental solution of the corresponding KZ-equation is rational. Now we construct this solution in the explicit form.
10
Content available remote

On the solutions of Knizhnik-Zamolodchikov system

76%
Open Mathematics
|
2009
|
tom 7
|
nr 1
145-162
EN
We consider the Knizhnik-Zamolodchikov system of linear differential equations. The coefficients of this system are rational functions. We prove that under some conditions the solution of the KZ system is rational too. We give the method of constructing the corresponding rational solution. We deduce the asymptotic formulas for the solution of the KZ system when the parameter ρ is an integer.
EN
Let ψ and φ be analytic functions on the open unit disk $\mathbb{D}$ with φ($\mathbb{D}$) ⊆ $\mathbb{D}$. We give new characterizations of the bounded and compact weighted composition operators W ψ,ϕ from the Hardy spaces H p, 1 ≤ p ≤ ∞, the Bloch space B, the weighted Bergman spaces A αp, α > − 1,1 ≤ p < ∞, and the Dirichlet space $\mathcal{D}$ to the Bloch space in terms of boundedness (respectively, convergence to 0) of the Bloch norms of W ψ,ϕ f for suitable collections of functions f in the respective spaces. We also obtain characterizations of boundedness for H 1 as well as of compactness for H p, 1 ≤ p < ∞, and $\mathcal{D}$ purely in terms of the symbols ψ and φ.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.