A recursion formula for derivatives of Chebyshev polynomials is replaced by an explicit formula. Similar formulae are derived for scaled Fibonacci numbers.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let ℱn = circ (︀F*1 , F*2, . . . , F*n︀ be the n×n circulant matrix associated with complex Fibonacci numbers F*1, F*2, . . . , F*n. In the present paper we calculate the determinant of ℱn in terms of complex Fibonacci numbers. Furthermore, we show that ℱn is invertible and obtain the entries of the inverse of ℱn in terms of complex Fibonacci numbers.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let λ denote any one of the spaces ℓ∞ and ℓp and λ(Ť) be the domain of the band matrix Ť. We study ℓp(Ť) for 1 ≤ p ≤ ∞ and give some inclusions and its topological properties. Also, we define the alpha−, beta− and gamma− duals of the space ℓp(Ť). Finally, we give some matrix mappings.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We define the k-Fibonacci matrix as an extension of the classical Fibonacci matrix and relationed with the k-Fibonacci numbers. Then we give two factorizations of the Pascal matrix involving the k-Fibonacci matrix and two new matrices, L and R. As a consequence we find some combinatorial formulas involving the k-Fibonacci numbers.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This survey deals with pluri-periodic harmonic functions on lattices with values in a field of positive characteristic. We mention, as a motivation, the game “Lights Out” following the work of Sutner [20], Goldwasser- Klostermeyer-Ware [5], Barua-Ramakrishnan-Sarkar [2, 19], Hunzikel-Machiavello-Park [12] e.a.; see also [22, 23] for a more detailed account. Our approach uses harmonic analysis and algebraic geometry over a field of positive characteristic.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.