Isothermic parameterizations are synonyms of isothermal curvature line parameterizations, for surfaces immersed in Euclidean spaces. We provide a method of constructing isothermic coordinate charts on surfaces which admit them, starting from an arbitrary chart. One of the primary applications of this work consists of numerical algorithms for surface visualization.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces and obtain the natural non-linear partial differential equations describing them. We obtain a characterization of space-like surfaces, whose curvatures satisfy a linear relation, by means of their natural partial differential equations. We obtain the ten natural PDE’s describing all linear fractional space-like Weingarten surfaces.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces in the four-dimensional Euclidean space, determined by conditions on their invariants, can be interpreted in terms of the properties of two geometric figures: the tangent indicatrix, which is a conic in the tangent plane, and the normal curvature ellipse. We construct a family of surfaces with flat normal connection.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Groping our way toward a theory of singular spaces with positive scalar curvatures we look at the Dirac operator and a generalized Plateau problem in Riemannian manifolds with corners. Using these, we prove that the set of C 2-smooth Riemannian metrics g on a smooth manifold X, such that scalg(x) ≥ κ(x), is closed under C 0-limits of Riemannian metrics for all continuous functions κ on X. Apart from that our progress is limited but we formulate many conjectures. All along, we emphasize geometry, rather than topology of manifolds with their scalar curvatures bounded from below.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.