We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite torsion. In the language of Hitchin’s and Gualtieri’s generalized complex geometry, (4,4)-manifolds are called “generalized hyperkähler manifolds”. We show that the moduli space of anti-self-dual connections on M is a (4,4)-manifold if M is equipped with a (4,4)-structure.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper deals with a family of lightlike (null) hypersurfaces (H u) of a Lorentzian manifold M such that each null normal vector ℓ of H u is not entirely in H u, but, is defined in some open subset of M around H u. Although the family (H u) is not unique, we show, subject to some reasonable condition(s), that the involved induced objects are independent of the choice of (H u) once evaluated at u = constant. We use (n+1)-splitting Lorentzian manifold to obtain a normalization of ℓ and a well-defined projector onto H, needed for Gauss, Weingarten, Gauss-Codazzi equations and calculate induced metrics on proper totally umbilical and totally geodesic H u. Finally, we establish a link between the geometry and physics of lightlike hypersurfaces and a variety of black hole horizons.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
First-order jet bundles can be put at the foundations of the modern geometric approach to nonlinear PDEs, since higher-order jet bundles can be seen as constrained iterated jet bundles. The definition of first-order jet bundles can be given in many equivalent ways - for instance, by means of Grassmann bundles. In this paper we generalize it by means of flag bundles, and develop the corresponding theory for higher-oder and infinite-order jet bundles. We show that this is a natural geometric framework for the space of Cauchy data for nonlinear PDEs. As an example, we derive a general notion of transversality conditions in the Calculus of Variations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.