In this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),$$ $$k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord{\left/ {\vphantom {{\Omega _i \left( x \right)} {\left| x \right|}}} \right. \kern-\nulldelimiterspace} {\left| x \right|}}^{{n \mathord{\left/ {\vphantom {n {q_i }}} \right. \kern-\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper is devoted to research on local properties of functions and multidimensional singular integrals in terms of their mean oscillation. The conditions guaranteeing existence of a derivative in the L p-sense at a given point are found. Spaces which remain invariant under singular integral operators are considered.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ which is a generalization of the higher-order commutator of the rough fractional integral on the generalized weighted Morrey spaces Mp,ϕ (w). We find the sufficient conditions on the pair (ϕ1, ϕ2) with w ∈ Ap,q which ensures the boundedness of the operators [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ from [...] Mp,φ1wptoMp,φ2wq ${M_{p,{\varphi _1}}}\left( {{w^p}} \right)\,{\rm{to}}\,{M_{p,{\varphi _2}}}\left( {{w^q}} \right)$ for 1 < p < q < ∞. In all cases the conditions for the boundedness of the operator [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ are given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2) and w, which do not assume any assumption on monotonicity of ϕ1 (x,r), ϕ2(x, r) in r.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, the author introduces parabolic generalized local Morrey spaces and gets the boundedness of a large class of parabolic rough operators on them. The author also establishes the parabolic local Campanato space estimates for their commutators on parabolic generalized local Morrey spaces. As its special cases, the corresponding results of parabolic sublinear operators with rough kernel and their commutators can be deduced, respectively. At last, parabolic Marcinkiewicz operator which satisfies the conditions of these theorems can be considered as an example.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study the vector-valued B-singular integral operators associated with the Laplace-Bessel differential operator △B=∑k=1n−1∂ 2∂x k 2+(∂2∂x n 2+2vxn∂∂x n),v>0. $$\triangle_{B}=\sum\limits_{k=1}^{n-1}\frac{\partial^{2}}{\partial x_{k}^{2}}+(\frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{2v}{x_{n}}\frac{\partial}{\partial x_{n}}) , v>0.$$ We prove the boundedness of vector-valued B-singular integral operators A from [...] Lp,v(R+n,H1)toLp,v(R+n,H2), $L_{p,v}(\mathbb{R}_{+}^{n}, H_{1}) \,{\rm to}\, L_{p,v}(\mathbb{R}_{+}^{n}, H_{2}),$ 1 < p < ∞, where H1 and H2 are separable Hilbert spaces.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We study sharp weak-type inequalities for a wide class of Fourier multipliers resulting from modulation of the jumps of Lévy processes. In particular, we obtain optimal estimates for second-order Riesz transforms, which lead to interesting a priori bounds for smooth functions on ℝd. The proofs rest on probabilistic methods: we deduce the above inequalities from the corresponding estimates for martingales. To obtain the lower bounds, we exploit the properties of laminates, important probability measures on the space of matrices of dimension 2×2, and some transference-type arguments.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.