Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

C7-Decompositions of the Tensor Product of Complete Graphs

100%
EN
In this paper we consider a decomposition of Km × Kn, where × denotes the tensor product of graphs, into cycles of length seven. We prove that for m, n ≥ 3, cycles of length seven decompose the graph Km × Kn if and only if (1) either m or n is odd and (2) 14 | m(m − 1)n(n − 1). The results of this paper together with the results of [Cp-Decompositions of some regular graphs, Discrete Math. 306 (2006) 429–451] and [C5-Decompositions of the tensor product of complete graphs, Australasian J. Combinatorics 37 (2007) 285–293], give necessary and sufficient conditions for the existence of a p-cycle decomposition, where p ≥ 5 is a prime number, of the graph Km × Kn.
2
Content available remote

Cores, Joins and the Fano-Flow Conjectures

100%
EN
The Fan-Raspaud Conjecture states that every bridgeless cubic graph has three 1-factors with empty intersection. A weaker one than this conjecture is that every bridgeless cubic graph has two 1-factors and one join with empty intersection. Both of these two conjectures can be related to conjectures on Fano-flows. In this paper, we show that these two conjectures are equivalent to some statements on cores and weak cores of a bridgeless cubic graph. In particular, we prove that the Fan-Raspaud Conjecture is equivalent to a conjecture proposed in [E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78 (2015) 195–206]. Furthermore, we disprove a conjecture proposed in [G. Mazzuoccolo, New conjectures on perfect matchings in cubic graphs, Electron. Notes Discrete Math. 40 (2013) 235–238] and we propose a new version of it under a stronger connectivity assumption. The weak oddness of a cubic graph G is the minimum number of odd components (i.e., with an odd number of vertices) in the complement of a join of G. We obtain an upper bound of weak oddness in terms of weak cores, and thus an upper bound of oddness in terms of cores as a by-product.
3
Content available remote

A Degree Condition Implying Ore-Type Condition for Even [2,b]-Factors in Graphs

100%
EN
For a graph G and even integers b ⩾ a ⩾ 2, a spanning subgraph F of G such that a ⩽ degF (x) ⩽ b and degF (x) is even for all x ∈ V (F) is called an even [a, b]-factor of G. In this paper, we show that a 2-edge-connected graph G of order n has an even [2, b]-factor if [...] max {degG (x),degG (y)}⩾max {2n2+b,3} $\max \{ \deg _G (x),\deg _G (y)\} \ge \max \left\{ {{{2n} \over {2 + b}},3} \right\}$ for any nonadjacent vertices x and y of G. Moreover, we show that for b ⩾ 3a and a > 2, there exists an infinite family of 2-edge-connected graphs G of order n with δ(G) ⩾ a such that G satisfies the condition [...] degG (x)+degG (y)>2ana+b $\deg _G (x) + \deg _G (y) > {{2an} \over {a + b}}$ for any nonadjacent vertices x and y of G, but has no even [a, b]-factors. In particular, the infinite family of graphs gives a counterexample to the conjecture of Matsuda on the existence of an even [a, b]-factor.
4
Content available remote

Core Index of Perfect Matching Polytope for a 2-Connected Cubic Graph

100%
EN
For a 2-connected cubic graph G, the perfect matching polytope P(G) of G contains a special point [...] xc=(13,13,…,13) $x^c = \left( {{1 \over 3},{1 \over 3}, \ldots ,{1 \over 3}} \right)$ . The core index ϕ(P(G)) of the polytope P(G) is the minimum number of vertices of P(G) whose convex hull contains xc. The Fulkerson’s conjecture asserts that every 2-connected cubic graph G has six perfect matchings such that each edge appears in exactly two of them, namely, there are six vertices of P(G) such that xc is the convex combination of them, which implies that ϕ(P(G)) ≤ 6. It turns out that the latter assertion in turn implies the Fan-Raspaud conjecture: In every 2-connected cubic graph G, there are three perfect matchings M1, M2, and M3 such that M1 ∩ M2 ∩ M3 = ∅. In this paper we prove the Fan-Raspaud conjecture for ϕ(P(G)) ≤ 12 with certain dimensional conditions.
5
Content available remote

Decomposition of Certain Complete Bipartite Graphs into Prisms

81%
EN
Häggkvist [6] proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K6n,6n. In [1] Cichacz and Froncek established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph Kn,n into generalized prisms of order 2n. In [2] and [3] Cichacz, Froncek, and Kovar showed decompositions of K3n/2,3n/2 into generalized prisms of order 2n. In this paper we prove that K6n/5,6n/5 is decomposable into prisms of order 2n when n ≡ 0 (mod 50).
6
Content available remote

Rectangular table negotiation problem revisited

81%
Open Mathematics
|
2011
|
tom 9
|
nr 5
1114-1120
EN
We solve the last missing case of a “two delegation negotiation” version of the Oberwolfach problem, which can be stated as follows. Suppose we have two negotiating delegations with n=mk members each and we have a seating arrangement such that every day the negotiators sit at m tables with k people of the same delegation at one side of each table. Every person can effectively communicate just with three nearest persons across the table. Our goal is to guarantee that over the course of several days, every member of each delegation can communicate with every member of the other delegation exactly once. We denote by H(k, 3) the graph describing the communication at one table and by mH(k, 3) the graph consisting of m disjoint copies of H(k, 3). We completely characterize all complete bipartite graphs K n,n that can be factorized into factors isomorphic to G =mH(k, 3) for k ≡ 2 (mod 4) by showing that the necessary conditions n=mk and m ≡ 0 mod(3k−2)/4 are also sufficient. This results complement previous characterizations for k ≡ 0, 1, 3 (mod 4) to settle the problem in full.
7
Content available remote

Dense Arbitrarily Partitionable Graphs

81%
EN
A graph G of order n is called arbitrarily partitionable (AP for short) if, for every sequence (n1, . . . , nk) of positive integers with n1 + ⋯ + nk = n, there exists a partition (V1, . . . , Vk) of the vertex set V (G) such that Vi induces a connected subgraph of order ni for i = 1, . . . , k. In this paper we show that every connected graph G of order n ≥ 22 and with [...] ‖G‖ > (n−42)+12 $||G||\; > \;\left( {\matrix{{n - 4} \cr 2 \cr } } \right) + 12$ edges is AP or belongs to few classes of exceptional graphs.
8
Content available remote

New bounds for the broadcast domination number of a graph

81%
EN
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all v ∈ V and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σv∈V f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ⊆ V(G) is said to be irredundant if each x ∈ X dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.
9
Content available remote

Strong edge geodetic problem in networks

81%
EN
Geodesic covering problems form a widely researched topic in graph theory. One such problem is geodetic problem introduced by Harary et al. [Math. Comput. Modelling, 1993, 17, 89-95]. Here we introduce a variation of the geodetic problem and call it strong edge geodetic problem. We illustrate how this problem is evolved from social transport networks. It is shown that the strong edge geodetic problem is NP-complete. We derive lower and upper bounds for the strong edge geodetic number and demonstrate that these bounds are sharp. We produce exact solutions for trees, block graphs, silicate networks and glued binary trees without randomization.
10
Content available remote

Disjoint triangles and quadrilaterals in a graph

81%
Open Mathematics
|
2008
|
tom 6
|
nr 4
543-558
EN
Let n, s and t be three integers with s ≥ 1, t ≥ 0 and n = 3s + 4t. Let G be a graph of order n such that the minimum degree of G is at least (n + s)/2. Then G contains a 2-factor with s + t components such that s of them are triangles and t of them are quadrilaterals.
11
Content available remote

Packing Coloring of Some Undirected and Oriented Coronae Graphs

62%
EN
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set of vertices V(G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k. For a given integer p ≥ 1, the p-corona of a graph G is the graph obtained from G by adding p degree-one neighbors to every vertex of G. In this paper, we determine the packing chromatic number of p-coronae of paths and cycles for every p ≥ 1. Moreover, by considering digraphs and the (weak) directed distance between vertices, we get a natural extension of the notion of packing coloring to digraphs. We then determine the packing chromatic number of orientations of p-coronae of paths and cycles.
EN
We characterize the class [...] L32 $L_3^2 $ of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 $L_3^2 $ in the class of threshold graphs, where n is the number of vertices of a tested graph.
13
Content available remote

Sharp Upper Bounds on the Clar Number of Fullerene Graphs

52%
EN
The Clar number of a fullerene graph with n vertices is bounded above by ⌊n/6⌋ − 2 and this bound has been improved to ⌊n/6⌋ − 3 when n is congruent to 2 modulo 6. We can construct at least one fullerene graph attaining the upper bounds for every even number of vertices n ≥ 20 except n = 22 and n = 30.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.