In the present paper we introduce a q-analogue of the Baskakov-Kantorovich operators and investigate their weighted statistical approximation properties. By using a weighted modulus of smoothness, we give some direct estimations for error in case 0 < q < 1.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present paper, we introduce the q-Szász-Durrmeyer operators and justify a local approximation result for continuous functions in terms of moduli of continuity. We also discuss a Voronovskaya type result for the q-Szász-Durrmeyer operators.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we obtain various approximation theorems by means of k-positive linear operators defined on the space of all analytic functions on a bounded domain of the complex plane.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, considering A-statistical convergence instead of Pringsheim’s sense for double sequences, we prove a Korovkin-type approximation theorem for sequences of positive linear operators defined on the space of all real valued Bögel-type continuous and periodic functions on the whole real two-dimensional space. A strong application is also presented. Furthermore, we obtain some rates of A-statistical convergence in our approximation.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, the concept of lacunary equi-statistical convergence is introduced and it is shown that lacunary equi-statistical convergence lies between lacunary statistical pointwise and lacunary statistical uniform convergence. Inclusion relations between equi-statistical and lacunary equi-statistical convergence are investigated and it is proved that, under some conditions, lacunary equi-statistical convergence and equi-statistical convergence are equivalent to each other. A Korovkin type approximation theorem via lacunary equi-statistical convergence is proved. Moreover it is shown that our Korovkin type approximation theorem is a non-trivial extension of some well-known Korovkin type approximation theorems. Finally the rates of lacunary equi-statistical convergence by the help of modulus of continuity of positive linear operators are studied.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we present some theorems on weighted approximation by two dimensional nonlinear singular integral operators in the following form: T λ ( f ; x , y ) = ∬ R 2 ( t − x , s − y , f ( t , s ) ) d s d t , ( x , y ) ∈ R 2 , λ ∈ Λ , $${T_\lambda }(f;x,y) = \iint\limits_{{\mathbb{R}^2}} {(t - x,s - y,f(t,s))dsdt,\;(x,y) \in {\mathbb{R}^2},\lambda \in \Lambda ,}$$ where Λ is a set of non-negative numbers with accumulation point λ0.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We establish direct estimates for the q-Baskakov operator introduced by Aral and Gupta in [2], using the second order Ditzian-Totik modulus of smoothness. Furthermore, we define and study the limit q-Baskakov operator.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The pointwise approximation properties of the Bézier variant of the MKZ-Kantorovich operators $$ \hat M_{n,\alpha } (f,x) $$ for α ≥ 1 have been studied in [Comput. Math. Appl., 39 (2000), 1-13]. The aim of this paper is to deal with the pointwise approximation of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the other case 0 < α < 1. By means of some new techniques and new inequalities we establish an estimate formula on the rate of convergence of the operators $$ \hat M_{n,\alpha } (f,x) $$ for the case 0 < α < 1. In the end we propose the q-analogue of MKZK operators.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present paper we introduce and investigate weighted statistical approximation properties of a q-analogue of the Baskakov and Baskakov-Kantorovich operators. By using a weighted modulus of smoothness, we give some direct estimations for error in the case 0 < q < 1.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper is devoted to Hermite interpolation with Chebyshev-Lobatto and Chebyshev-Radau nodal points. The aim of this piece of work is to establish the rate of convergence for some types of smooth functions. Although the rate of convergence is similar to that of Lagrange interpolation, taking into account the asymptotic constants that we obtain, the use of this method is justified and it is very suitable when we dispose of the appropriate information.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this article, the issue of the best uniform approximation of circular arcs with parametrically defined polynomial curves is considered. The best uniform approximation of degree 2 to a circular arc is given in explicit form. The approximation is constructed so that the error function is the Chebyshev polynomial of degree 4; the error function equioscillates five times; the approximation order is four. For θ = π/4 arcs (quarter of a circle), the uniform error is 5.5 × 10−3. The numerical examples demonstrate the efficiency and simplicity of the approximation method as well as satisfy the properties of the best uniform approximation and yield the highest possible accuracy.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study, we obtain a local approximation theorems for a certain family of positive linear operators via I-convergence by using the first and the second modulus of continuities and the elements of Lipschitz class functions. We also give an example to show that the classical Korovkin Theory does not work but the theory works in I-convergence sense.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we obtain some approximation theorems for k- positive linear operators defined on the space of analytical functions on the unit disc, via I-convergence. Some concluding remarks which includes A-statistical convergence are also given.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.