There are only some exceptional CR dimensions and codimensions such that the geometries enjoy a discrete classification of the pointwise types of the homogeneous models. The cases of CR dimensions n and codimensions n 2 are among the very few possibilities of the so-called parabolic geometries. Indeed, the homogeneous model turns out to be PSU(n+1,n)/P with a suitable parabolic subgroup P. We study the geometric properties of such real (2n+n 2)-dimensional submanifolds in $\mathbb{C}^{n + n^2 } $ for all n > 1. In particular, we show that the fundamental invariant is of torsion type, we provide its explicit computation, and we discuss an analogy to the Fefferman construction of a circle bundle in the hypersurface type CR geometry.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.