We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Given a free ultrafilter p on ℕ we say that x ∈ [0, 1] is the p-limit point of a sequence (x n)n∈ℕ ⊂ [0, 1] (in symbols, x = p -limn∈ℕ x n) if for every neighbourhood V of x, {n ∈ ℕ: x n ∈ V} ∈ p. For a function f: [0, 1] → [0, 1] the function f p: [0, 1] → [0, 1] is defined by f p(x) = p -limn∈ℕ f n(x) for each x ∈ [0, 1]. This map is rarely continuous. In this note we study properties which are equivalent to the continuity of f p. For a filter F we also define the ω F-limit set of f at x. We consider a question about continuity of the multivalued map x → ω fF(x). We point out some connections between the Baire class of f p and tame dynamical systems, and give some open problems.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.