A graph G is called supermagic if it admits a labelling of the edges by pairwise di erent consecutive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we will introduce some constructions of supermagic labellings of some graphs generalizing double graphs. Inter alia we show that the double graphs of regular Hamiltonian graphs and some circulant graphs are supermagic.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection ϕ : V (G) → S satisfying ∑x∈N(u) ϕ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}. Let i(G) = min α(S), where the minimum is taken over all sets S for which the graph G admits an S-magic labeling. Then i(G) − n is called the distance magic index of the graph G. In this paper we determine the distance magic index of trees and complete bipartite graphs.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A = {1, 2, . . . , tm+tn}. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into 2t pairwise disjoint subsets A1, A2, . . . , At, B1, B2, . . . , Bt such that |Ai| = m and |Bi| = n, and ∑a∈Ai a = ∑b∈Bj b for 1 ≤ i ≤ t and 1 ≤ j ≤ t. In this paper we give sufficient and necessary conditions for a set A to have the (m, n, t)-BCSP-property in the case when m and n are both even. We use this result to show some families of distance magic graphs.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An edge-ordering of a graph G=(V, E) is a one-to-one mapping f:E(G)→{1, 2, ..., |E(G)|}. A path of length k in G is called a (k, f)-ascent if f increases along the successive edges forming the path. The altitude α(G) of G is the greatest integer k such that for all edge-orderings f, G has a (k, f)-ascent. In our paper we give exact values of α(G) for all helms and wheels. Furthermore, we use our result to obtain altitude for graphs that are subgraphs of helms.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An edge-magic total labeling of an (n,m)-graph G = (V,E) is a one to one map λ from V(G) ∪ E(G) onto the integers {1,2,…,n + m} with the property that there exists an integer constant c such that λ(x) + λ(y) + λ(xy) = c for any xy ∈ E(G). It is called super edge-magic total labeling if λ (V(G)) = {1,2,…,n}. Furthermore, if G has no super edge-magic total labeling, then the minimum number of vertices added to G to have a super edge-magic total labeling, called super edge-magic deficiency of a graph G, is denoted by μs(G) [4]. If such vertices do not exist, then deficiency of G will be + ∞. In this paper we study the super edge-magic total labeling and deficiency of forests comprising of combs, 2-sided generalized combs and bistar. The evidence provided by these facts supports the conjecture proposed by Figueroa-Centeno, Ichishima and Muntaner-Bartle [2].
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A Γ-distance magic labeling of a graph G = (V, E) with |V| = n is a bijection ℓ from V to an Abelian group Γ of order n such that the weight $$w(x) = \sum\nolimits_{y \in N_G (x)} {\ell (y)}$$ of every vertex x ∈ V is equal to the same element µ ∈ Γ, called the magic constant. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order |V(G)|. In this paper we give necessary and sufficient conditions for complete k-partite graphs of odd order p to be ℤp-distance magic. Moreover we show that if p ≡ 2 (mod 4) and k is even, then there does not exist a group Γ of order p such that there exists a Γ-distance labeling for a k-partite complete graph of order p. We also prove that K m,n is a group distance magic graph if and only if n + m ≢ 2 (mod 4).
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Häggkvist [6] proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K6n,6n. In [1] Cichacz and Froncek established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph Kn,n into generalized prisms of order 2n. In [2] and [3] Cichacz, Froncek, and Kovar showed decompositions of K3n/2,3n/2 into generalized prisms of order 2n. In this paper we prove that K6n/5,6n/5 is decomposable into prisms of order 2n when n ≡ 0 (mod 50).
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ℓ from V to the set {1, . . . , n} such that the weight w(x) = ∑y∈NG(x) ℓ(y) of every vertex x ∈ V is equal to the same element μ, called the magic constant. In this paper, we study unions of distance magic graphs as well as some properties of such graphs.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
When a graceful labeling of a bipartite graph places the smaller labels in one of the stable sets of the graph, it becomes an α-labeling. This is the most restrictive type of difference-vertex labeling and it is located at the very core of this research area. Here we use an extension of the adjacency matrix to count and classify α-labeled graphs according to their size, order, and boundary value.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We solve the last missing case of a “two delegation negotiation” version of the Oberwolfach problem, which can be stated as follows. Suppose we have two negotiating delegations with n=mk members each and we have a seating arrangement such that every day the negotiators sit at m tables with k people of the same delegation at one side of each table. Every person can effectively communicate just with three nearest persons across the table. Our goal is to guarantee that over the course of several days, every member of each delegation can communicate with every member of the other delegation exactly once. We denote by H(k, 3) the graph describing the communication at one table and by mH(k, 3) the graph consisting of m disjoint copies of H(k, 3). We completely characterize all complete bipartite graphs K n,n that can be factorized into factors isomorphic to G =mH(k, 3) for k ≡ 2 (mod 4) by showing that the necessary conditions n=mk and m ≡ 0 mod(3k−2)/4 are also sufficient. This results complement previous characterizations for k ≡ 0, 1, 3 (mod 4) to settle the problem in full.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.