Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

On Conditions for Unrectifiability of a Metric Space

100%
EN
We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.
2
Content available remote

BiLipschitz Decomposition of Lipschitz Maps between Carnot Groups

100%
EN
Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction that G has an appropriate discretization. We provide an example of a Carnot group not admitting such a discretization.
3
Content available remote

A Formula for Popp’s Volume in Sub-Riemannian Geometry

100%
EN
For an equiregular sub-Riemannian manifold M, Popp’s volume is a smooth volume which is canonically associated with the sub-Riemannian structure, and it is a natural generalization of the Riemannian one. In this paper we prove a general formula for Popp’s volume, written in terms of a frame adapted to the sub-Riemannian distribution. As a first application of this result, we prove an explicit formula for the canonical sub- Laplacian, namely the one associated with Popp’s volume. Finally, we discuss sub-Riemannian isometries, and we prove that they preserve Popp’s volume. We also show that, under some hypotheses on the action of the isometry group of M, Popp’s volume is essentially the unique volume with such a property.
EN
In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a bounded domain in a step two Carnot group (G; σε ). We establish interior and boundary gradient estimates, and develop a Schauder theory which are stable as ε → 0. As a consequence we obtain long time existence of smooth solutions of the sub-Riemannian flow (ε = 0), which in turn yield sub-Riemannian minimal surfaces as t → ∞.
5
Content available remote

A survey on Inverse mean curvature flow in ROSSes

76%
Complex Manifolds
|
2017
|
tom 4
|
nr 1
245-262
EN
In this survey we discuss the evolution by inverse mean curvature flow of star-shaped mean convex hypersurfaces in non-compact rank one symmetric spaces. We show similarities and differences between the case considered, with particular attention to how the geometry of the ambient manifolds influences the behaviour of the evolution. Moreover we try, when possible, to give an unified approach to the results present in literature.
6
Content available remote

Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces

64%
EN
We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.
EN
Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.