We study polynomial iterative roots of polynomials and describe the locus of complex polynomials of degree 4 admitting a polynomial iterative square root.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The connection between the functional inequalities $$f\left( {\frac{{x + y}} {2}} \right) \leqslant \frac{{f\left( x \right) + f\left( y \right)}} {2} + \alpha _J \left( {x - y} \right), x,y \in D,$$ and $$\int_0^1 {f\left( {tx + \left( {1 - t} \right)y} \right)\rho \left( t \right)dt \leqslant \lambda f\left( x \right) + \left( {1 - \lambda } \right)f\left( y \right) + \alpha _{\rm H} \left( {x - y} \right),} x,y \in D,$$ is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We collect and generalize various known definitions of principal iteration semigroups in the case of multiplier zero and establish connections among them. The common characteristic property of each definition is conjugating of an iteration semigroup to different normal forms. The conjugating functions are expressed by suitable formulas and satisfy either Böttcher’s or Schröder’s functional equation.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let {F t: t ≥ 0} be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and $$G(x) = \mathop {\lim }\limits_{s \to 0} {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} \mathord{\left/ {\vphantom {{\left( {F^0 \left( x \right) - F^s \left( x \right)} \right)} {\left( { - s} \right)}}} \right. \kern-\nulldelimiterspace} {\left( { - s} \right)}}$$ for x ∈ K.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The problem of invariance of the geometric mean in the class of Lagrangian means was considered in [Głazowska D., Matkowski J., An invariance of geometric mean with respect to Lagrangian means, J. Math. Anal. Appl., 2007, 331(2), 1187–1199], where some necessary conditions for the generators of Lagrangian means have been established. The question if all necessary conditions are also sufficient remained open. In this paper we solve this problem.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.