Using an inverse system of metric graphs as in [3], we provide a simple example of a metric space X that admits Poincaré inequalities for a continuum of mutually singular measures.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Alon and Yuster give for independent identically distributed real or vector valued random variables X, Y combinatorially proved estimates of the form Prob(∥X − Y∥ ≤ b) ≤ c Prob(∥X − Y∥ ≤ a). We derive these using copositive matrices instead. By the same method we also give estimates for the real valued case, involving X + Y and X − Y, due to Siegmund-Schultze and von Weizsäcker as generalized by Dong, Li and Li. Furthermore, we formulate a version of the above inequalities as an integral inequality for monotone functions.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Using the generalized Erdélyi-Kober fractional integrals, an attempt is made to establish certain new fractional integral inequalities, related to the weighted version of the Chebyshev functional. The results given earlier by Purohit and Raina (2013) and Dahmani et al. (2011) are special cases of results obtained in present paper.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem $$u \in W_0^1 L^\Phi \left( \Omega \right) and - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega ,$$ where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ℝn.
We consider the eigenvalue problem for the p(x)-Laplace-Beltrami operator on the unit sphere. We prove same integro-differential inequalities related to the smallest positive eigenvalue of this problem.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this present work, the authors establish a new integral identity involving generalized fractional integral operators and by using this fractional-type integral identity, obtain some new Hermite-Hadamard type inequalities for functions whose first derivatives in absolute value are convex. Relevant connections of the results presented here with those earlier ones are also pointed out.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.