Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Chebyshev Distance

100%
EN
In [21], Marco Riccardi formalized that ℝN-basis n is a basis (in the algebraic sense defined in [26]) of [...] ℰTn ${\cal E}_T^n $ and in [20] he has formalized that [...] ℰTn ${\cal E}_T^n $ is second-countable, we build (in the topological sense defined in [23]) a denumerable base of [...] ℰTn ${\cal E}_T^n $ . Then we introduce the n-dimensional intervals (interval in n-dimensional Euclidean space, pavé (borné) de ℝn [16], semi-intervalle (borné) de ℝn [22]). We conclude with the definition of Chebyshev distance [11].
2
Content available remote

Locallyn-Connected Compacta and UV n -Maps

64%
EN
We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding projections pβα, as a well all limit projections pα, are UVn-maps. A compactum X is a cell-like (resp., UVn) space if and only if X is the limit space of a σ-complete inverse system consisting of cell-like (resp., UVn) metrizable compacta.
3
64%
Open Mathematics
|
2017
|
tom 15
|
nr 1
1063-1074
EN
The aim of this paper is to prove some fixed point results for generalized φ-weak contraction mapping and study a new concept of stability which is called comparably almost T-stable by using iterative schemes in CAT(0) spaces.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.