We characterize the family of quotients of peripherally continuous functions. Moreover, we study cardinal invariants related to quotients in the case of peripherally continuous functions and the complement of this family.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let C(f), Q(f), E(f) and A(f) be the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f: X → ℝ, respectively. The triplets (C(f),Q(f),A(f)), (C(f),E(f),A(f) and (Q(f),E(f),A(f)are characterized for functions defined on Baire metric spaces without isolated points.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We introduce new properties of Hamel bases. We show that it is consistent with ZFC that such Hamel bases exist. Under the assumption that there exists a Hamel basis with one of these properties we construct a discontinuous and additive function that is Marczewski measurable. Moreover, we show that such a function can additionally have the intermediate value property (and even be an extendable function). Finally, we examine sums and limits of such functions.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This expository paper focuses on the study of extreme surjective functions in ℝℝ. We present several different types of extreme surjectivity by providing examples and crucial properties. These examples help us to establish a hierarchy within the different classes of surjectivity we deal with. The classes presented here are: everywhere surjective functions, strongly everywhere surjective functions, κ-everywhere surjective functions, perfectly everywhere surjective functions and Jones functions. The algebraic structure of the sets of surjective functions we show here is studied using the concept of lineability. In the final sections of this work we also reveal unexpected connections between the different degrees of extreme surjectivity given above and other interesting sets of functions such as the space of additive mappings, the class of mappings with a dense graph, the class of Darboux functions and the class of Sierpiński-Zygmund functions in ℝℝ.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let T 1 and T 2 be topologies defined on the same set X and let us say that (X, T 1) and (X, T 2) are similar if the families of sets which have nonempty interior with respect to T 1 and T 2 coincide. The aim of the paper is to study how similar topologies are related with each other.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.