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Introduction

Inrecent years various notions from geometry have been successfully applied
to problems in system theory. Hermann-Martin [22] have described
a transfer function geometrically as well as important system theoretic
concepts associated with a transfer function. Brockett [3] and Byrnes—
Duncan [8], [9] have studied the topology of families of transfer functions
using geometric methods. Byrnes—-Hurt {7] have investigated the orbit
space structure of the state space realizations of linear systems. These
results only allude to the larger body of recent results in system theory
using geometric methods.

The geometric methods that are important here are those that are
used to analyze linear pure delay time systems. Such systems have been
described as linear systems over a ring of polynomials [27], [43] and this
description has been viewed geometrically [6]. State space realization
problems have been solved [5], [44]. One method to solve the realization
problem is to do a pointwise construction over the prime spectrum of the
ring and to show that this construction is locally algebraic. The globa-
lization of this method follows from the positive solution of the Serre
problem. This technique of a pointwise construction and its globalization
will play a basic role in the methods that are used in this paper. The al-
gebraic condition of reachability has been shown to be a generic property
of linear pure delay time systems if the transcendence degree of the poly-
nomial ring is less than the dimension of the input space [32]. Reacha-
bility and its dual condition, observability, will be important in the subse-
quent presentation.

In many filtering problems the data that is given is a transfer func-
tion over a ring of polynomials. Such descriptions appear in distributed
electrical networks that contain delay lines. Thus a state space realization
is required which requires the algebraic conditions of reachability and
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observability, From this state space realization a filtering solution is
obtained.

The finite time filtering problem for linear pure delay time stochastie
systems will be solved pointwise over the prime spectrum of the ring.
This pointwise solution will follow from the filtering solution for linear
stochastic systems without delays. The solution will be suitably locally
algebraic and it will be globalized. Similar geometric methods had been
used in [18] to solve a filtering problem for a special class of linear pure
delay time stochastic systems.

The infinite time filtering solution for linear pure delay time stochastie
systems will be obtained with the algebraic conditions of reachability
and observability. This solution will be obtained by solving a dual optimal
control problem. A control with finite cost will be constructed by geometrie
methods.

Briefly to outline this paper some preliminaries will be initially re-
viewed, A linear pure delay time differential equation can be formulated
mathematically in a number of ways. Various functional analytic descrip-
tions as well as a ring theoretic description can be used. Describing the
solution in terms of a transfer function over a ring of polynomials will
be particularly important here. Some geometric notions are reviewed
that enable a geometric description of a linear pure delay time system.
The Lagrangian Grassmannian is introduced which plays an important
role in optimization problems.

Since the filtering solution of some time delay equations requires
some smoothing estimates, the problem of smoothing for linear systems
without delays is investigated. Ljung-Kailath [35] have used a result
from scattering theory [39] to describe the various smoothing solutions.
However, their approach does not eclarify the geometric methods that
implicitly appear. In this paper the aforementioned scattering result is
described geometrically and the various smoothing solutions are shown
to arise directly from natural geometric ideas.

The finite time filtering problem for linear pure delay time stochastic
systems is formulated and solved by geometric techniques. Using these
geometric methods this solution is induced naturally from the filtering
solution for linear systems without delays.

The duality between filtering and control for linear pure delay time
systems is shown to follow from the duality for linear systems without
delays. The infinite time filtering problem is solved by solving
the dual infinite time optimal control problem with the algebraic
conditions of reachability and observability, Finally some remarks are
made on how to apply these methods to linear stochastic optimal
control.
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1. Preliminaries

A linear pure delay time system with input « and output y is a family of
equations of the form

d k
(1.1) = = D (Aia(t—6) +Buu(t—8y),

fml

k
(1.2) y(t) = D) Cu(t—6,)
i=1

where A, e Homg(R", R"), B; e Homgz (R™, R"), C; e Homgz(R", R?), 6, 0,
¢ =1,2,..., k The differential equation (1.1) will be called #me invariant
if (A;, B~ r are constant homomorphisms. Similarly the system
(1.1)~1.2) will be called time ¢nvariant if (A;, B;, C;);,.. ;. aTe constant.
The space of initial conditions is the Cartesian product of the Fuclidean
space R and the function space L?([—7,0], R") where 7 = max¥6,.
For our purposes p will be 1 or 2. This space of initial conditions was
introduced by Delfour-Mitter [13], [14] who demonstrated the existence
and the uniqueness of a locally integrable solution of (1.1) when
(A;y Bk, r are locally integrable. Alternatively, a solution in the space
of continuous functions can be established given an initial condition in
this space [21]. However, the former initial conditions are important
in some applications and will be used in this paper. Let d, be the Dirac
distribution at a. Since (8,+z) (t) = z(t— a), the equation (1.1) can be
described in the convolution ring of Schwartz distributions. This approach
can be viewed functional analytically using distribution theory or al-
gebraically using the ring structure. The equation (1.1) is viewed as a linear
functional differential equation over the subring of the convolution ring
of Schwartz distributions formed from the finite sums of Dirac distri-
butions and locally integrable functions.

The equation (1.1) can also be described as an equation over a ring
of polynomials. Given the delays {6, ..., 0,} it is possible to obtain a col-

lection {6.1, veey 0;} such that

i
6= m(ib, n(H=0, j=1,.0ki=1,..,L

=1
Define the linear operator o; as
(o, 2) 1) =x(t—0), i=1,...,1.
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Then the equation (1.1) can be described as an equation over the ring
Rf{o,, ..., g] and, of course, the transcendence degree of this ring is 1.
Proceeding more algebraically, a ring of polynomials could have been
defined in indeterminates that correspond to the delays (4,,..., 6,) and
then the transcendence degree of this ring could have been computed
to specify independent indeterminates.

The solution of the equation (1.1) can be obtained by many methods.
The formulations in the space R" x.IL*?([ —7, 0], R") or the space of conti-
nuous functions can be used and the solution can be constructed using
the methods of functional analysis. However, for our purposes the formu-
lation of the equation over the ring of polynomials and its relation to
the formulation over the subring of the convolution ring of Schwartz
distributions will be particularly important. For a time invariant system
(1.1)~1.2) this approach will provide a transfer function method for
solution of the equations. This method was developed by Kamen [26],
[27]. Kamen (Prop. 3, [27]) showed that the ring homomorphism

e: S[w]l—->8[»]

given by 3 a,w'— Y a;ep* where w is an indeterminate, p is the distribu-
tional derivative, and § is the subring of Schwartz distributions is an
isomorphism for characteristic polynomials. Thus the transfer function
over the ring of polynomials converts the problem of finding the solution
of (1.1)~(1.2) from analysis to algebra. This transfer function is solved
over the fraction field and the solution is shown to be locally integrable.
The solution is given as

2 = (pl —A) '»(Bsu_+5,8,+2)

where z, and z are the initial conditions and «_ is the input for ¢ positive.
The equivalence between the algebraic description of the solution of
(1.1)—(1.2) in terms of a transfer function over a ring of polynomials and
the functional analytic description of the solution of (1.1)-(1.2) in the
convolution ring of Schwartz distributions will be especially important
in the subsequent work.

To describe geometrically the system (1.1)—(1.2) viewed as a system
over a ring of polynomials it is useful to review some terminology. Let
R be a ring. An R-module P is called E-projective if for any R-epimorphism
g e Homgz(A, B) and any f € Homgz(P, B), there exists an f' e Homg (P, A)
such that gof’ =f. This property is described by the diagram
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For the case where P = B we have the geometric notion of projection.
This definition is equivalent to the property that any R-epimorphism
A—»P splits or that P is a direct summand of a free R-module. Let p be
a prime ideal of E. The localized module P, of the E-module P is the
module induced from P by the localization &, of the ring E. An R-module
P is projective if and only if P, is free for each prime ideal p. This descrip-
tion of a projective module alludes strongly to its geometric description.
Let Spec(R) be the prime spectrum of B, that is the set of all prime ideals
of B with the Zariski topology. There is a bijection between algebraic
vector bundles over Spec(R) and E-projective modules [41]. This bijection
preserves such operations as direct sum, tensor product and exterior
powers. The rank of the bundle can be computed locally on the residue
field and it is easy to see that it is constant on connected components.

For the ring R = R[a,,...,0;] it is well known that Spec(R) is
affine space A'. The linear system (1.1)—(1.2) is said to be reachable if

(1.3) rk[B, AB, ..., A" 'B](6) =n for all ¢ 4
and it is said to be observable if
(1.4) rk[C,CA,...,CA" "] (s) == for all ¢ € A’

If the linear system over the ring corresponding to (1.1)—(1.2) is reachable
and observable then the canonical state module is a finitely generated,
projective R-module of rank n. Given a transfer function over R, if the
rank of the associated Hankel matrix is a constant # then a realization
(4, B, C) can be obtained where the canonical state module is a finitely
generated, projective module of rank » [5]. Byrnes [6] constructed locally
a minimal realization using the rank condition of the Hankel matrix and
then globalized this construction by the positive solution of the Serre
problem [38], [45]. The realization can also be done using the notion of
split system [44]. On the canonical state module there is a GL(n; R)
action. Kappel [28] has shown that the natural analytic identification
exists between the solution of (1.1)—(1.2) and the solution of the equations
obtained by a coordinate transformation using an element of GL(n; R).
Using the geometric approach many problems of linear pure delay time
systems can be solved pointwise over Spec(R). These solutions are shown
to be described locally algebraically so that a projective module is obtained.
Finally, it is necessary to globalize the solution, which requires showing
that the algebraic vector bundle is globally trivial. In the realization
problem described above the positive solution of the Serre problem is
required. Often local constructions exhibit certain symmetries which
can be described as reductions of the structure group GL(n; R). For
example, the internally symmetric realization of a symmetric transfer
function over R requires that a symmetric form is preserved [8]. The
associated algebraic problem is usually called the quadratic Serre problem.
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In optimization or filtering problems a symplectic algebraic vector bundle
arises which implies that a skew form is preserved or equivalently that
GL(n; R) is reduced to Sp(n; R). It is known that symplectic projective
modules are always free [2].

The Lagrangian Grassmannian is an important geometrical object
that arises in optimization problems. Let Gr(n, 2n) be the real Grass-
mannian of n-planes in 2% space. The Lagrangian Grassmannian, LG (»),
is a subset of Gr(m, 2n) such that if I7 € LG(n) then JIT | IT where J
is the standard complex structure on R*". The Lagrangian Grassmannian
LG(n) can also be described as the homogenecous space U(n)/O(n) [1].
It can also be identified with a compactification of symmetric matrices
because a plane I7 is Lagrangian if and only if there is a generating function
3(8q, ¢> such that p = S8¢q where (q, p) are suitable coordinates in R*"
{10]. In optimization problems Hamiltonian equations arise as necessary
conditions for an extremum. For the optimization problems with linear
equations and quadratic costs the linear Hamiltonian equations describe
a flow in the symplectic group. Computing the Hamilton—Jacobi equation
as a local solution of the optimization problem gives a Ricecati equation.
Riccati equations appear as vector fields in the Lagrangian Grassmannpian
because the technique of going from the Hamiltonian equations to the
Hamilton—-Jacobi equation is a projection from 2n-space to Lagrangian
n-planes [17]. The Hamiltonian equations lose their sufficiency for an
extremum when the curve in the Lagrangian Grassmannian intersects
the Maslov cycle and a caustic appears.

For the optimization or estimation problem for linear pure delay
time systems an application of the results for systems without delays
at each point of Spec(R) will piece together algebraically to define a symp-
lectic algebraie veetor bundle. Thus it should not be surprising that a Ric-
cati equation plays a basic role in such optimization problems.

To gain some perspective of systems over rings a few examples will
be briefly described. Given a transfer function over a ring of polynomials
a nonprojective module will arise if the conditions of reachability and
observability (1.3)—(1.4) are not satisfied or more directly if the local
rank of the Hankel matrix is not constant.

It is easy to construct projective modules that are not free. Consider
the coordinate ring of the real n-sphere R, = R[t,, ..., t,]/(ti + ... +12—1).
Let @, ..., z, be the images of t,,...,%, in R, and let ™ be the (uni-
modular) row (a,, ..., «,). The solution space P™ of t™ defines a finitely
generated (stably free) R,-module of rank «. Specifically a local compu-
tation shows that there are = linearly independent vectors that can be
adjoined to '™ to make an (n+1) X (n-+1) invertible matrix. This mo-
dule is the algebraic tangent bundle of the real n-sphere. This module
ig free if and only if the algebraic tangent bundle is globally trivial. This
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occurs only if n =1, 3, 7. For example, for n = 2 suppose that (z,, x,, ;)

can be completed as
Ly X Xy
Yo Y1 Y2
with determinant a unit in R,. Since

¢ = 2y(T,Ya— Z2Y1) — 21T Y3 — T2Yo) +22(Zo Y1 — T1Y0)

is assumed to be nonzero on 8%, the vector (yo(v), y1(v), y,(v)) is nowhere
colinear with v € 8% The orthogonal projection of ¥ on T8§? is a nowhere
zero continuous vector field which is well known to be impossible.

It is elementary to construct examples of linear pure delay time
systems that are reachable and observable as defined by (1.3)—(1.4).
A simple example is

dz,

dt

— 2,(1) +u(1),

dz,
dt

y(t) = —x, (1 1)+ 25(1).

= y(t) + @yt 1) fu(t=1),

On the other hand it is easy to construct linear pure delay time differ-
ential equations that satisfy an R™ reachability property [47] but are
not reachable in the ring theoretic sense. However, often the data that is
available for delay time system problems is not a state space description
but a transfer function description. In many physical problems the transfer
function is given over the ring of polynomials in the delays. For example,
this can ocecur in distributed parameter electrical networks that contain
delay lines.

2. Smoothing for linear stochastic systems without delays

Recursive algorithms for estimation were initially obtained for the solu-
tions of the problems of filtering and prediction [25]. The smoothing
problem presented somewhat more difficulty because if a linear operation
is performed on the observations for the smoothing estimate, there is
a correlation in the observations which complicates the recursive pro-
cedure. However, a number of different algorithms have been given for the
solution of the smoothing problem, e.g. [20], [31], [36]. One approach
[35] has been given that relates these different algorithms by the use of
scattering theory techniques. However, these scattering methods are
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unfamiliar to most people who work in estimation theory and these
methods, as they were used, do not provide a geometric or even intuitive
understanding of the various smoothing formulae. The star product of
Redheffer [39] that was used in [35] to obtain various smoothing algo-
rithms is not given any geometrical description so that it can seem as
merely a strange rule for multiplication. In addition, to obtain some
smoothing formulae some ad hoc techniques were used because cevtain
linear transformations are not invertible. More recently the notion of
minimal splitting subspaces [34] has been applied to the smoothing prob-
lem.

Some of the elementary ideas of scattering theory will be briefly
described as a prelude to the geometric view of it in the Lagrangian Grass-
mannian. Scattering theory can loosely be described as the mathematical
study or description of the effect of an obstacle (in three space) on the
propagation of waves. Schematically scattering can be described as an
obstacle from which waves are scattered:

i
Sp———

v

ﬁ—v‘—- 1

N

where v; and v, are the incident waves and v, and v, are the reflected
waves. These waves are related by the following transformation

- L)

The quantities ¢ and r are the transmission and the reflection coefficients,
respectively, on the left side of the above diagram and ¢ and 7 are the
reflection and the transmission coefficients, respectively, on the right side
of the diagram. The equation (2.1) can also be expressed as

-1 ollv| _ |t 0]|v,
& a IR B
This equation will be important for the geometric interpretation of scat-
tering. The star product of Redheffer [39] is a rule for the composition
of two obstacles, that is the series connection of two boxes such as the

one given in the above diagram. This product is given by the following
equation:

(2.3) 2 91] . [ts 92] _ [ta(l— 0172) "'y 0at1s 91(1—"291)—172].

1 %1 Ty Tg B "'1+717'2(1—917'l)_1t1 Ti(l—r; 91)_1‘5:



ESTIMATION FOR LINRAR PURE DELAY TIME SYSTEMS 207

For j =1,2 let

| 0
(2.4) A, = [r, _1],
(2.5) B, = — [—3 i’;]

For a composition of two obstacles each described by equations in the
form of (2.2) the waves on the left side of the two obstacles can be related
to the waves on the right side by

A7'B,A;'B,.

This product must be expressed as A;'B, where 4, and B; have the form
of (2.4) and (2.5), respectively. Since the upper or the lower triangular
invertible matrices form a subgroup of the genmeral linear group, it is
only necessary to reexpress the product B, A;' to obtain the expression
A;'Bs. The following elementary lemma will effect the desired change.

LemmA 2.1. Let a,b,c,d e Homgy(R", R") be such that c¢,(1— ad)
€ GL(n; R). The following equation is satisfied where the factorization on
the right-hand side <8 unique given the lefi-hand side.

_ -1
eo o 3L 2

_[ c@—ad  o]'[1  e(l—ad)a
~ | —bd(1—ad) —1] [0 —[b+bd(1—"'d)_’“]]'

Applying this lemma to the equation
AT'B AT'B, = A7'B,

gives
@ —eur) 'ty 0
(@1 4 “[r1+r1r.(1—em)-1t1 —1]’
_ -1 opt+ti0,(1—r,y 91)-171
(2.8) By = [ 0 7,(L—ry0) "7, ]

Clearly the nontrivial terms that appear in A, and B; are the ones that
appear in the star product (2.3).

For a Lagrangian n-plane, a point in the Lagrangian Grassmannian
LG(n), coordinates can be chosen so that £ = Pr where P € Hompg(R", R")

is symmetric. Expressing the outgoing waves ¥ =[:’] as a linear trans-

2

. . . ? .
formation of the incoming waves 2z = [v“] we obtain
1

(2.9) y =Pz
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where

_le 1
(2.10) P _L r].

Clearly this grouping of variables is natural physically and system the-
oretically where the incoming waves are viewed as inputs and the outgoing
waves as outputs.

For the application of scattering theory to the smoothing problem g
and r will be symmetric and the transpose of 7 is ¢.

To describe the smoothing problem consider the stochastic processes
described by the stochastic differential equations

(2.11) dX(t) = FX (t)dt +GdB(t),
(2.12) dY (1) = HX (t)dt+dB(t)

where F € Homp(R", R"), ¢ ¢ Homp(R™, R"), H ¢ Homg(R", R?), (B(1)
and (B(t)) are independent standard m- and p-dimensional Brownian
motions, respectively, Y (0) = 0 and X (0) = X, is a zero mean Gaussian
random variable with covariance P, that is independent of the two Brow-
nian motions.

Let z << t and suppose that the conditional mean, E[X,|Y,, 0 < s <],
and the corresponding error covariance are desired in terms of recursive
algorithms. Treating X, as an unknown parameter this problem can be
solved from fhe filtering solution with parameters. Apparently this ap-
proach was first suggested for such questions by Zachrisson [50]. The
infinitesimal data for this augmented problem are

F 0 @
# =, 0], g:[o], # =[H 0]

with the stochastic equations
(2.13) adZ (8) = FX(8)ds +9dB(s),
(2.14) A% (8) = X (8)ds 1 dB(s)

where 7 is fixed, ¢ € [z, ?] and

(2.15) x(s) = [‘Eg]

The equations for the augmented filtering solution are
(2.16) dF (s) = [F —PHTH) X (s)ds+PHTAY (3),
(2.17) 2 _ FP 1P FT 1897 —PHTHP

ds
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where
& X
X(r)]
_|P@) P(r)
Z(7) P(r) P(r))

X(x) = B[X(v)|X(0), 0< o< 7],
P(r) = E[X()XT(x)] and X(x) = X(z)—X (7).

Once the error covariance has been identified for the filtering problem,
it is elementary to obtain the optimal estimate. Similarly, this will be the
case for the smoothing problem.

Probably the most direet approach to the solution of the smoothing
problem, which is sometimes called the forward innovations approach,
is to solve the augmented Riccati equation (2.17) in forward time with

the correct initial conditions. This forward innovations approach gives
the equations

d
(2.18) EPn =[F —'PnHTH]Pn;
Py(r) = P(7),
d
(2.19) EPII = F'Pll +P11FT+GGT—P11HTHP11,

Py (7) = P(1),

d

(2.20) Ti?P" — —P, HTHP,,,
Pyy(t) = P(7)

where

P, P
? — 11 12]
[P a1 P 22
is partitioned into » X n blocks and P,,(t) is the error covariance for the

conditional mean of X(r) given the observations until time t, X(zjt).
From P,, it follows directly that

(2.21) X(z|t) = X () +P(v)A(z, 1)
where

t
(2.29) Mz, t) = f o7 (8, 7) HT[dY (8) —HX (8)ds]

14 — Banach Center t. 14
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and ¢ is the fundamental solution of (2.18) or equivalently the fundamental
solution of the optimal estimate equation.

Another solution to the smoothing problem has been given by Lai-
niotis [31] via the so-called partitioned formulae. In this case a special
inital condition is used in the solution of the augmented Riccati equation
in forward time, that is,

(2.23) P(7) =[(1’ 3]

where 1 is the identity transformation. This is a natural initial condition
because the off diagonal terms in #, P,, and P,,;, are the optimal system
and its transpose. In addition, it is a natural initial condition for the
scattering theory description. Recall the linear transformations (2.2)
that describe the scattering theory picture. Evaluating this equation for
e=0,r=0,1=1and t =1 gives

%] _ %

v} Loel
Then changing the initial condition to (2.23) merely requires the compo-
gition of two linear relations which has been computed in (2.7)2.8).

Since the primary interest is in the smoothed error covariance P,(rt),
only it will be given:

(2.24) P,(z1t) = P(7) —P(1)Pa(t, 7) [1 +P (1) Py (8, 7)1 P(7)
= [Py, 1) +P~ ()]

where

1
PlLt,7) = [ i (s, ) HT Hpy(s, 7)ds

and P), is obtained from the equation (2.17) with the initial condition

ro-[2 ]

and ¢, is the fundamental solution for the optimal filter. The optimal
estimate is

(2.25) X (zit) = P,(tlt) [Ao(t, ) +P () X (v)]

where

¢
(2.26) Ao(z,1) = [ ¢f (s, 7)HT [dY (8) —HX(s)ds]
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and X, is the solution of the optimal filter where the symmetric initial

condition
0 1
P(z) = [1 0]
is used.

While the optimal estimate X (rt) in (2.25) can be obtained from the
error covariance P,, it seems worthwhile to describe the simple geometric
ideas that give this estimate. The term 1, in (2.26) as well as the term
A in (2.22) are elements in the £-plane where the canonical variables in
the Hamiltonian equations or equivalently the Lagrangian Grassmannian
are (z, £). From the forward innovations solution it follows that ¥ (r)
and 1, must be combined. Since £ () is in the z-plane, it is mapped to
the &-plane by P “}(7). The two terms are added, 2,+P~!(z)X () and
then this sum must be mapped back to the z-plane. The symmetric form
that relates # and ¢ for the smoothing solution is the error covariance
for the smoothing problem, P,(z|t), which gives (2.25).

A natural dual approach to that used to obtain the partitioned for-
mulae is to perform a solution in the &-plane in reverse time with the
given data at the final time ?. This approach to the smoothing problem
was given independently by Mayne [36] and Fraser [20] and it is often
called the two filter approach. In this approach the interplay between the
x and the & variables is more apparent. Recall that a Lagrangian Grass-
mannian is a natural compactification of symmetric matrices. This app-
roach is sometimes formally described as using a forward and a backward
optimal filter where the covariance for the backward solution has the
initial value infinity. Clearly to make this description precise the backward
solution should use the £-variable instead of the z-variable.

To obtain the partitioned formulae without any computations a com-
parison will be made between the Hamiltonian equations for an esti-
mation problem and an optimal control problem. Recall the Hamilto-
nian equations for the estimation problem described by (2.11)-(2.12):

(2.27) —‘ZE = —FTz+HTHE,
(2.28) %ti — GGz +FE.

For the augmented Riccati equation the given data is

(1) = [2 3]

With this given data for the scattering problem, the infinitesimal gencrator
for the backward solution is the same as for the forward solution [39].
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This fact is also clear for this data from the geometric description of the
problem because the notion of the positivity of time plays no intrinsie
role in the description. Thus the vector fields in the Hamiltonian equations
(2.27)-(2.28) are the same for this backward solution where the “state”
is considered as the § variable because these equations are locally equivalent;
to the Riccati equation. Solving the Hamiltonian equations in reverse
time is merely solving an optimal control problem where the &-variable
is the state. Recall the Hamiltonian equations for the standard optimal
control problem represented in state space by (4, B, O):

dx
(2.29) v Az —BBT¢,
(2.30) z—f = —CTC0x—AT¢.

Now it is only necessary to make the natural identifications between these
two families of Hamiltonian equations to obtain the augmented Riccati
equation #° and the optimal smoothing estimate:

(2.81) 7g Ful) = —H'H+FTP), + P, F+P,6G"P),,
Ph(t) =0,

(2.32) ;f P}, = P},GG"PY,,
PL(1) =0,

(233) =2 PY(o) = [FT+PL,GETIPY,

do
Pu(t) = 1,
(2.34)  P(rlt) = [—PH(H)+P}(x)]7,
(2.35)  X(1)t) =P,(v}t) [Z(x) +P (1) X (v)],
(2.36) dZ (o) = —[FT+P},GG7)Z(0)dc—HTdY (v),
Z(t) = 0.

Since the two filter approach can he viewed as a dual to the parti-
tioned formulae, it is natural to find a dual to the forward innovations
approach. This approach is often called the backward innovations approach.
This approach can be seen most clearly in two steps. Initially, a realization
must be obtained for the state stochastic process in reverse time. Since
this stochastic process is a zero mean Gaussian process, it is uniquely deter-
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mined in probability law by its covariance function. To transport the
covariance for (X (s)) from 7 to t it suffices to solve a filtering problem
without observations. This problem can be solved by the Hamiltonian
equations

d
(2.37) d—‘: — —FTu,

d
(2.38) d_‘f @54 FE

or equivalently by the Riccati equation

dI7
(2.39) el FII+ITFT 4667,

I(7) = P(%).

It is claimed that the state transition matrix, Fp, for the backward
realization of this Gauss-Markov process is

(2.40) Fy = —(F4GGTITY),

Two verifications of this result will be described. First, the state transition
matrix can be seen from the Hamiltonian equations. The dual variable
¢ is used because of the natural pairing in optimization problems between
the state with an initial condition and the dual variable with a final con-
dition. The negative sign arises because the system is run in reverse time
and the equation for ¢ in the Hamiltonian equations is in the forward
direction. The equivalence of the two realizations can also be verified
directly from the Riccati equations. For the system

(2.41) —dXg(o) = FgXgdo+GdBg(o)
there is the Riccati equation
—dp -
(2.42) -Eli = QG - [F4+GGTII | P—-P[F+GF 1Y,
Py = I(@).
Since IT(t) = P(1) and
a1 ap
(2.43) -d?.s_‘ = e ol

it follows by the uniqueness of the solutions of the Riccati equations that

_ dp
II(s) = P(s) for s € [v,t]. The vector field e instead of

is used
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in (2.43) because the negative sign was introduced to compute the solu-
tion in reverse time.

The Hamiltonian equations for the backward estimation problem
are the same as those for the forward estimation problem except that
the direction of time has been reversed. The Hamiltonian equations ean
be expressed as

dx

(2.44) 20 = —FLe+HTHE,
(2.45) Z—i = GG xr+Fpt.

Recalling that these Hamiltonian equations solve an estimation
problem with the notion of positive time reversed, the augmented Riccati
equation in the initial notion of positive time is

—d
(2.46) ‘%‘Pn = —[F +eaT I +P11HTH]P12’

P,(t) = 11(1),

—d
(2.47) WPH = GeT —[F+GGT TP,

—P,[F+GGTII7']" —P, H"HP,;,
Pu(t) = H(t),

—d

(2.48) =

Py = —PnHTHPlzy

Po(t) = II(2).

The term P,; gives the filtered error covariance and P,, gives the smoothed
crror covariance. The optimal smoothed estimate is

(2.49) X (zlt) = X(v)+H(1)A5(t, 7)

where

(2.50) Ag(t,7) = [ ¢"(0, ) HT [dY 5(0) —HX 1 (0)d0],
[

—dXy(0) = FpXpdo+GdBg(o),
dYg(0) = HXg(o)do +dBg(o).
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It should be noted that equation (2.48) differs in sign from that given
by Ljung-Kailath (equation (84), [35]). Integrating (2.48) it is seen that

t
Pu(1)—Py(t) = — [ P, HTHP,,,

]
{2.51) Pyy(1) = (1)~ [P, HTHP;,.

Thus the error covariance for the smoothing solution is less than the
error covariance for the filtering solution. This error covariance (2.51)
is also consistent with the smoothed estimate (2.20).

3. Finite time filtering for linear pure delay time stochastic systems

Consider the linear pure delay time stochastic equations

k
(3.1) dX (1) = D F,X(1—6,)dt +GdB(t),

i=1

k
(3.2) dY (1) = Y H X (t—6,)dt+dB(1)
el
where F,eHomp(R", R"), H,eHomgx(R", R"), ¢+=1,2,...,k Ge
€ Homgz(R™, R"), X(0) is a zero mean Gaussian random variable with
covariance P,, X(s) = 0 for s < 0, Y(s) =0, £ <0, and (B(t)} and (B(1)
arc independent standard R™- and R?-dimensional Brownian motions.
These linear delay time stochastic equations can be described as a sto-
chastic system over a ring of polynomials using the previous methods
for linear delay time equations. Specifically the system will be denoted

(3.3) dX(t) = FXdt+GdB(t),
(3.4) dY (1) = HX dt+dB(t)

where F e Homg(M, M), G € Homg(R™, M), H e Homg(M, R?), R is
the ring of polynomials R[o,, ..., 0;] with transcendence degree [ and M
is the state module. Unless stated to the contrary it is always assumed
that (F, @) is reachable (1.3) and (¥, H) is observable (1.4).

It is elementary to verify that the equations (3.1)~(3.2) have one and
only one solution. One method to accomplish this is to recall that the
transfer function method of Kamen [27] can be used for locally square
integrable functions. Using the canonical normal distribution in Hilbert
space to construct Brownian motion, a sequence of solutions to locally
square integrable inputs are obtained which can be shown to converge
to the desired solution. The uniqueness of the solution will also follow
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from this construction. The Gaussian initial conditions will imply the
square integrability of the solution and the fact that it is also Gaussian.

Some filtering problems of the form (3.1)-(3.2) have been solved
in [29], [30], [37].

A description will be given of the geometric formulation of the fil-
tering problem. The stochastic system (3.3)-(3.4) can be viewed as an
equation in the state module which is an algebraic vector bundle over
Spec(R). Associated to the principal bundle of this state module are
other bundles that are important in problems. For example, the esti-
mation problem can be described as a symplectic algebraic vector bundle
associated to the principal bundle. The symplectic structure can be defined
pointwise over Spec(R) and it follows immediately that it can be picced
together algebraically. In general it is known [2] that a symplectic alge-
braic vector bundle is globally trivial. However, for the symplectic bundle
for the filtering problem it is clear from the construction that it is glo-
bally trivial. In this geometric formulation it is important to recall the
isomorphism between the convolution ring of Schwartz distributions
and the ring of polynomials. This isomorphism implies that the geometric
description provides a description in terms of functional analysis.

THEOREM 3.1. Let (X ®, Y(t)),en be the stochastic processes that
satisfy the equations (3.1)—(3.2) where (F,@Q) i8 reachable and (F, H) is
observable. The conditional mean, E[X(1)| Y (u), 0 < u < t], satisfies the
stochastic equation

(3.5) dX(;t) = (FX(t; 1) —[P(¢t, t; ) HT]
[HX (t; t)))dt+ [P(t, t; ) HT1AY (1)
where X (t;8) = B[X(W)X(r), 0 < r< 5] and
o X (t;t) =X(t—06,;1),
P(t, t;t)o; = P(t,t—0,; 1),
X(;0) =0, 8<0

where o; i8 the operator corresponding to the delay 5, and the brackets [-]
are used to indicate where the delay operators act.
The error covariance is P and it salisfies the deterministic equations

dP(t t't)

(3.6) — 12" = FP+4+PF*—[PHT] [HP]+GG7,
(3.7) (— )P(t t—a;t) = FP(t,t—a;t)—

—[P(t, t; ) HT] [HP(t, t—a; t)],
(3.8) (— +—+ —)P(t yt—F;t)

= —[P(t—a, t; ) HT) [HP(, t—§;1)]
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where P(0,0;0) =P,, P(s,1;0) =0 for <0 and t< 0, o,P(t,s;7)
=P(t—0; 8;7r) and

P(r,s;t) = E[X(r; t) X% (s; 1)],
X(s;t) = X(8)-X(s;1).

Proof. For te R, , F|X,*< oo so the conditional mean X (t;1) and
the error covariance P(t, t; t) exist.

The conditional mean and the error covariance will be shown to
satisfy equations that are obtained by geometric methods. Recall that
for R, a ring of polynomials Rf{o,,..., ¢;], Spec(R) is affine space. For
each point & € Spec(R) = A' localization at & gives Mmodz and F(x),
G(z) and H(x). The transfer function is also naturally localized. For this
pointwise system we can use the usual results for filtering to obtain

dP
(39) E = F(0)P,+P,F"(2) - [P, B (2)] [H (2)P,] +G(a) " (o).
It is clear that these pointwise Riccati equations can be pieced together
locally algebraically. This local construection, for example at each maximal
ideal, can be globalized to

(3.10) %Iti =FP +PFT— [PHT}[HP]+G6~.

Since pointwise this gives the error covariance, the optimal cost, it is
clear that if there is one solution to (3.10) then it is the error covariance
for the filtering solution. Again by a pointwise construction it follows
that the conditional mean, the optimal estimate, satisfies the equation

(3.11) dX(t;t) = (FX (t; ) —[P(t, t; ) HT)
[HX (t; t)]) dt -+ [P(t, t; ) HT]AY (3).

From the estimation problem it is clear that the error covariance exists.
This is a simple argument of projection in the Hilbert space of random
variables formed from the observations (¥ (t)). Thus equation (3.11)
defines the conditional mean because the error covariance P is known to
exist and there is one and only one solution of (3.11) [13], [14]. To verify

dP
(3.10) it is only necessary to verify the differentiability of P, Ty (t, t; t).
Let X(t;t) = X(t)—X (¢;1). The stochastic equation for X is
(3.12) dX (t;1) = FXdt+QdB(1)— [PHT] [dY (1) —HX dt].

Since P is a continuous function, it can be shown that this equation has
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a unique solution [14]. Recall that
P(t,t;t) = E[X(t; ) X7 (¢; 1)].

Integrating the stochastic equation for X, using the change of variables
formula for products of ordinary and stochastic integrals [23] and inter-
changing expectation and the integrals obtained from the change of
variables formula we have

i ¢ ¢ [
P(t,1;%) = Po+ [FPds+ [ PFTds— [ [PHT][HP]ds+ fGGTds.
0 [1] [1] 1]

d
Thus w7 exists and satisfies the formal Riccati equation (3.10).

Expressing the Riccati equation (3.10) as a delay differential equation
it is clear that additional functions are necessary in order to solve this
cquation, These additional functions will be shown to satisfy certain
partial differential equations.

Let v > 0 and consider i(r;t). From general results on Gaussian
estimation it is known that

¢
(3.13) X(zr;1) = [ o(z, 8)dB(s)
0

where dB(s) = dY(s)—HZX(s;s)ds. The process (B(s)) is sometimes
called the innovations process. In addition it follows easily from the
projection methods in the Hilbert space of random wvariables gencrated
by the observations that

(3.14) o(r, 8) = P(r, 8; 8)HT'.

Consider P(r, s;?). Computing from the stochastic equation (3.1)
it is easy to verify that the covariance of X (r) is differentiable. For the
moment consider X as scalar-valued. Expressing X(r) in terms of an
L2(P) basis of the observations and its orthogonal complement it is easy
to verify that the covariance of X (r;t) is differentiable. The multidimen-
sional generalization is trivial so that P(r, s; ¢) has partial derivatives with
respect to r and s. It follows from (3.12) and (3.13) and the change of
variables formula for semimartingales that

/) 0
(3.15) (—- +-—)P(t,t—a;t) = FP(t,t —a;t)—
at da
—[P(t,t; Y HT] [HP (8, t—a;1)]
and

(3.16) (% +a—i + E—Z)P(t—a,t—ﬂ;t)

= —[P(t—a,t;t)HT] [HP(t, t—B; t)].
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These cquations (3.15)—(3.16) and equation (3.10) can also be formally
derived using the method of augmenting the state as was done to solve
the smoothing problem without delays (2.17). Specifically define the state

as
X(t)
X(t—a)l.
[X(t—ﬂ)]

To ensure that X (! —a) and X(t—pg) are “parameters”, differentiation
must be performed in directions that keep these constant. These directions
correspond to the partial derivatives in (3.15)—(3.16).

4. Infinite time filtering for linear pure delay time
stochastic systems

For linear systems without delays it is easy to shoew that the infinite
time control problem is well posed assuming that the system is reachable.
This follows from the fact that reachability is equivalent to the arbitrary
placement of the poles of the system by state feedback [42], [48]. How-
ever, this equivalence is not true for linear pure delay time systems [4].
While there are a number of guite restrictive results for the equivalence
of reachability and coefficient assignability of the characteristic poly-
nomial by state feedback, to verify that the infinite time control problem
is well posed only requires demonstrating one control for which the cost
functional is finite. By duality the previous discussion could have been
made for the infinite time filtering problem. Various results are available
for these infinite time problems using functional analysis e.g. {15], [30],
[46], [49]. However, when delays appear in the controls the conditions
for applicability of these results are difficult to verify. The results that
are given here use only the algebraic conditions of reachability and obser-
vability (1.3)—(1.4). These results were announced at IRIA in April 1979
[19] and at Oberwolfach in July 1979. Byrnes [6] has independently
obtained a stabilizability result that could be used for these infinite time
problems.

The steady state filtering problem arises when it is assumed that
the infinite past of the observations, o{¥ (), — oo < u <), is available
for the estimate of X (¢). While the finite time estimation problem always
has a solution, it is well known that there are steady state estimation
problems even for systems without delays that do not possess a solution.
To solve the infinite time estimation problem for linear systems with
pure delays it is necessary to establish a steady state property for the
augmented Riccati equation (3.6)—(3.8). Specifically, it is necessary to
show the convergence of a sequence of solutions defined on (1,,1] where
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t,| — co. Since it is more convenient to study a sequence of solutions on
[t, t,] where £, -} o0, a deterministic optimal control problem for a linear
pure delay time system will be introduced that will be naturally dua
to the filtering problem described by the equations (3.1)—(3.2). This duality
has been verified in [33]. However, it follows easily also by the geometric
description of linear pure delay time systems. Using the duality between
estimation and control for linear systems without delays [24] a pointwise
duality over Spec(R) can be established for systems with delays. Since
this pointwise result can be pieced together algebraically, global triviality
follows as well as the duality for linear pure delay time systems.
The deterministic control problem is described by the equations

d
(41) = = D [4(t—0) +Bau(t— )],

(4.2) y =Cz

with the cost functional

T
(4.3)  J(u;0,T) = [ [KCa(t), Ca(t))+ Cu(t), u(t))]dt+
0
+ (Dx(T), »(T)>

where A; = F{, B, =H},1=1,...,k, C =G" and D = P,. The linear
pure delay time equation (4.1) can be expressed, over the ring of poly-
nomials K as

(4.4) — = Az +Bu

where A e Homg(N, N), B e Homg(R?, N), N = MT and R = Rfa,, ...
..., 07] with transcendence degree I. Recall that (4, B) is reachable and
(4, C) is observable. The family of admissible controls are all functions
in L*([0, T], R?). Using some elementary Hilbert space techniques it
is easy to show that there is a unique admissible control that achieves
the optimal cost.

The important feature of the duality between estimation and control
that will be used here is that the optimal cost is computed from the sol-
ution of an augmented Riecati equation.

PROPOBITION 4.1. For the deterministic control problem described by the
equations (4.1)~(4.3) the solution of the following equations determines the
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oplimal cost:

(4.5) #t"”) — AT§+84 —[SB] [BT8]+C7C,
4.6 4 g S(t,t—ast) = ATS({t,t—ajt
(4.6) _(E‘l"a:)(’_a’)— (t,t—aj;t)—

—[8(¢,t;1)B] [BT8(t, t —a;1)],
4.7 (—+—+ aﬂ)S(t—a,t—ﬂ;t)

= [§(t—a, 1;1) B] [BTS(t, t—p;1)]

where S(TI',T;T) =D and the elements of the ring R act on § in the
same manner a8 in (3.6)-(3.8). Specifically, if z = (2,,2;) e R" X
xL’([ —7, O],R") is the initial condition for (4.1), then the optlmal
cost J*

(48) I = (8(0,0;0)zy,2,5+2< [ 8(0, —a;0)ay(a)da, 7, ) +

+ [ [ <S(—a, —B; 0)zs(a), zo(B)) dadp.

-7 -1

When there are no delays in the control input, this result has been
established by Delfour-Mitter [12]. For the control problem (4.1)-(4.3)
this result can be verified by geometric methods. Pointwise over Spec(R)
the optimal control results for systems without delays can be used. These
equations piece together locally algebraically. Since there is a solution
to these equations from the filtering results (3.6)—(3.8) it follows that
these pointwise sufficient conditions for optimality provide the global
sufficient conditions. This is an application of the Hamilton—Jacobi
equation for sufficiency for an optimal control. The optimal cost (4.8)
follows from these results.

For the infinite time optimal control problem to be well posed it
must be demonstrated that there is a control such that J(u;0, + oo)

is finite. This fact will be demonstrated in the proof of the following
result.

THEOREM 4.2. The infinite time oplimal conirol (4.1)-(4.3) where T
= + oo, (A, B) is reachable, (A, C) is observable and D = 0, is well posed.
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A steady stale solution to the equations (4.5)—(4.7) ewists as the solution of
(4.9) 0 = ATK(0,0)+K(0,0)A—[K(0,0)B][BTEK(0,0)]+CTC,

(4.10) -;;K(O; a) = ATK(0, a)—[K (0, 0)B) [BTK (0, a)],

0 c
(411) - (— + —)K(a, p) = [K(a, 0)B] [BTK (0, §)]

da op
where the elements of the ring R act on K dual to the action in (4.5)—(4.7).
The optimal cost for the infinite time control problem with the initial condition
& = (2, @) 8

(412)  J* = (E(0,0)z, 5,0 +2{ [ K(0, a)ay(a)da, @, )+

0 0
+ [ [ (E(a, B)za(a), 2(B)) dadp.

Proof. Initially it will be shown that since (4, B) is reachable over E,
there is a control such that the cost (4.3) with T = -+ oo is finite. A control
will be constructed using the geometric description of the system. The
usual projective embedding in linear system theory, sometimes called
the Kalman embedding [9], and the method of pole placecment or coeffi-
cient assignability for linear systems without delays shows that the coeffi-
cient assignability result varies locally algebraically with parameters.
Thus locally it it possible to assign arbitrarily the coefficients of the char-
acteristic polynomial by state feedback. Cover Spec(R) by Zariski open
sets determined by the prime ideals such that the coefficient assignability
result is satisfied in each of these sets. Since Spec(R) is quasi-compact,
there is a finite covering by these open sets. Denote these open sets as
Viy.oey Vi, the corresponding prime ideals as p,, ..., p;,. Form the local
rings R,, ..., R, where B; = Rpj. For each j e {1, ..., k} the linear system
(4.4) localized by the local ring R,, j = 1,2, ..., k has a control such that
the infinite time problem has finite cost. This property follows because
using state feedback locally the coefficients of the characteristic polynomial
can be arbitrarily assigned. To solve the localized system using the transfer
function over the local ring it suffices to show that it is a locally integrable
function but this property is determined by the characteristic polynomial
over the localized convolution ring of Schwartz distribution.

To define a global control that has finite cost for the given initial
data it suffices to use

k
u -=2uj
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where u; is a control on V, that gives finite local cost as described above.
This pointwise description of a control over Spec(R) clearly gives a measur-
able, square integrable function. Elementary estimates show that the
resulting cost is finite.

Let 8(t,t;t) be the solution or (4.5). Since the final time will be
varied, it is necessary to be more explicit about the function 8. Speci-
fically, the time interval of the control problem will be indicated. Thus
a solution of (4.5) will be described as 8(¢, t;t, 0, T). Since the equations
(4.5)-(4.7) are solved in reverse time, S(¢,%;t,0,T) can be naturally
identified with S(t,t;¢,t, T'). Since the linear system is translation inva-
riant by a translation of ¢, S({,%;1,7,T) can be computed as
8(0,0;0,0,T—1t). Since 1m&(0,0;0,0,T—1t) exists, so does
Lim8(t, t;¢,t, T). Tveo

T'—~o00

Let & be the quadratic form on R" x L*([ —7, 0], R™) that gives the
optimal cost (4.3) as a function of the initial condition. Let

L4 S
& = 11 12]
[,Sﬂ 21 Lo

where & is represented in block form according to the product R"™ X
xL*([ -7, 0], R®). Given &> 0 there is a T(¢) such that if T< I, < T,
then

(4.13) [Pty T))w, y) — (S aa(l, To), y)| < K || [y] e

where K can be chosen independent of z, ¥ and ¢. From this inequality
it follows immediately that 8(—a, —f;0,0,T—1) converges weakly
to a function k. Writing &,,(t, T') as an integral with kernel §(—a, —f;
0,0, T —1t) the inequality (4.13) shows that the partial derivatives with
respect to a and f§ of this integral converge uniformly in T. This uniform
convergence allows the interchange of these partial derivatives and the
limit a8 T— 4 oo. Thus

lim8(—~a, —§;0,0, 7T —1t) = k(a, B) a.e.

T-+c0
Again by the inequality (4.13) it is straightforward as above to show that
lim8(—a, —f;0,0, 7 —1) is a continuous function of a« and g. Thus &

T—>o00

can be defined everywhere as this continuous limit. From these compu-
tations it also follows that 1limS(0, —a; 0, 0, I —1) exists and is con-

T—oo

tinuous. Thus as I'—>oo the right-hand sides of (4.5)-(4.7) eonverge and
therefore also the left-hand sides of these equations. Consider equation
(4.6) and fix a. To show that the partial derivative with respect to ¢ and
the limit as T'— oo can be interchanged we can proceed as follows. Consider
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2
the derivative in the direction (1,1), that is, given by 72 +—— A uni-
a

form estimate in T of the derivatives along this line allows the mean
value theorem to give a uniform estimate to show that the differentiation
and limit can be interchanged. A similar approach is used for equation
(4.7). Thus we obtain the equations (4.9)—(4.11).

COROLLARY 4.2. For the reachable and observable stochastic filtering
equations (3.1)—(3.2) the steady state covariance equations exist and are
obtained from the solution of the following equations:

(4.14) 0 = FL(0, 0)+L(0, 0)FT ~[L(0, 0)HT] [HL(0, 0)] +GG7,
415) —--L(0, @) = FL(O, )~ [L(0, 0)E*] (L(0, o),

0
op
A brief discussion will be provided now for the geometric approach

to the stochastic optimal control of linear pure delay time systems. The
details of the solution will be omitted because the methods are similar

to the solution of the filtering problem, Consider the following linear pure
delay time stochastic differential equation:

(4.17) dX(t) = FX(t)dt+GdB(t) +CU(t)dt

where F and G are the same as in (3.1) and C € Homg(R?, M) and the cost
functional is

0
416) (0 +45) 2a, ) = [L(a, O BT HL, A1

T
(4.18) J(u) = }E[ [ QX (t), X(M)>+<U(t), UM dt+<AX(t), X(T)|.
0

It is assumed that (#, C) is reachable. To make this an interesting optimal
control problem it is desirable to allow a large family of controls. The
family of controls are required to be measurable with respect to the past
information, but in general the control will affect the s-algebras of the past
of the state. One method to avoid these difficulties is to allow the control
to be only a (suitably integrable) lincar functional of the state. For these
controls the solution of (4.17) exists and is unique and it can be easily
shown that the o-algebras generated by the state process do not vary as
the controls are varied in this family. However, it is possible to consider
a more general family of controis. This approach is in the spirit of some
general necessary and sufficient conditions for stochastic optimal controls
[11], [16], [40]. Let (#,) be a fixed augmented increasing family of o-
algebras on a probability space (2, #,P). A control U is admissible
if it is ( #,)-predictable and there is a unique law for the stochastic equation
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(4.17) given an (#,)-Brownian motion. A sufficient condition for opti-
mality is given by a smooth solution of the Hamilton-Jacobi (or dynamic
programming) equation. Assuming that this solution is quadratic the
equation can be reduced to the Hamilton—Jacobi equation of a determi-
nistic optimal control problem which has a solution (4.5)—(4.7). Using these
techniques it is also possible to obtain the solution to the stochastic con-
trol problem (4.17)—(4.18) with noisy partial observations.
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