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1. Introduction

For definiteness consider the situation where we have a sample X,,..., X, of
independent identically distributed random variables whose distribution de-
pends on an unknown real parameter 6. Suppose we choose a prior density
no for G with respect to Lebesgue measure and determine ¢,(X) so that the
posterior probability that 8 < ¢,(X) is «, a fixed number in the interval
(0, 1). Welch and Peers (1963) indicated that under appropriate regularity
condttions, if @, is the square root of Fisher’s information, then for any 6 the
probability that 0 < ¢,(X) differs from « by a term of the order of 1/n. Some
further results are contained in Welch (1965) and Peers (1965). My aim in
this paper is to extend and clarify this work.

The method ol proof attempted here is quite different from that of
Welch and Peers and the other relevant papers that will be referred to below.
The basic idea is to compare the posterior probability that 0 < ¢, (X), under
largely arbitrary prior density = with the posterior probability under ngy. This
is done using only an expansion of the loganthm of the likelihood function
in a Taylor series, and consequently 1t does not require a special structure
such as independently identically distributed observations. The unconditional
probability under n is then obtained with the aid of an integration by parts.
This approach postpones the difficulty caused by end effects and possible
irregularities in the sampling distribution. However these do cause difficulty
in a final step of unsmoothing.

The work described above is carried out in Sections 2 and 3. In Section
4 1 use the same method to obtain an additional term in the expansion
without even an attempt at rigor. In Section 5 I look at an analogous
question arising in the study of confidence sets for a single function of the
parameters in the multiparameter case. This section is also not at all rigorous
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and it 1s somewhat unsatisfactory even as heuristic work but it may be a
useful starting point for a more serious approach. Two examples are dis-
cussed in Sections 6 and 7. In Section 8, following a suggestion by Efron, I
indicate an argument that the basic result also holds conditionally given an
approximately ancillary statistic. [t was the work by Hinkley (1980) on this
question that first called my attention to this whole set of problems. He also
pointed out a serious blunder in my original version of Section 5. Some
closing remarks are also included in Section 8.

There are no real proofs in this paper. However, in Sections 2 and 3 1
have attempted to indicate, non-rigorously but with some care, the con-
ditions needed for the validity of the results obtained there. It would be
highly desirable to obtain mathematically correct versions of these results but
I am not at all sure that I shall do so.

This work has some resemblance to the development by Le Cam of his
notion of contiguity of probability measures. A good exposition of this
theory 1s that of Roussas (1972).

I am indebted to Professor Zielinski and to the directors of the Banach
Center for their invitation to present this work at the Center during the fall
semester of 1981.

2 The basic result in the one-parameter case

Let (7, 4, y) be a o-finite measure space, 4 an open subinterval of the real .
line and p a function on 7 to the set of all probability density functions with
respect to the measure p. For 8e€ 9 1 shall denote by P, the probability
measure that is the indefinite integral of p, with respect to u. My aim is to
discuss a method of obtaining an approximate upper a confidence point
¢.(X) for 6, that is a random point such that, for all 8e.F

Pyl < ¢o(X)} = a. (1)

As I have already indicated in the introduction I have not obtained rigorous
proofs of any of the readily interpretable results. However the arguments
leading to (40) with the associated formulas for remainders in (33)+39) and
earlier definitions are intended to be rigorous.

Both the definition of the approximate confidence points and the
attempt to verify (1) will use prior distributions for 6. For any probability
density function = with respect to Lebesgue measure in 7, let P, denote the
probability distribution of a pair (6, X) of random variables where € is
distributed in .7 according to n and the conditional p.df. (wrtu) of X given
© 15 pe. Conditional probability given X under this distribution will be
denoted by PY. We choose a particular p.df. n, with respect to Lebesgue
measure in J and determine ¢, to satisfy

P30 < ¢, (X)) = a. (2)
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Unfortunately it is impracticable to study the approximate identity (1)
directly. Instead we shall ask when it is true that for a largely arbitrary prior
density =, we have, to a good approximation,

P {6 <¢,(X)} ~a. (3)

The question of the extent to which thisimplies (1) will be postponed to the
next section. Roughly speaking, we shall see that under suitable regularity
conditions,

P {© < ¢,(X)]
+CXP(—%[‘V '(@)]’)

S

where I(0) is Fisher’s information, given by

1(0) = E, [%]z. (5)

The second term on the r.hs. of (4) vanishes if we choose n, proportional to
12,

1 d s
j 70 (6) dO [ (O) I~ V2(O)])n(6)dO  (4)

g

The result will be obtained by comparing P} {© < ¢,(X)} with a
= P,",‘0 {©@ < ¢,(X)} and then taking unconditional expectation under P,. In
this way a version of (4) will be obtained in the form of an identity. The
remainder is somewhat complicated but it should not be difficult to make a
rough judgment of its order of magnitude.

It is assumed that = and 7, are twice continuously differentiable and
that n, does not vanish. With

J =(a, b) (6)
where we may have a = — o or b= oo or both, it is also assumed that
Eimn(@) I Y2(0) = lim=(8) 1~ /2 (0). )
0—a [ s ]

This will be required for an integration by parts and, as will be discussed in
Section 3, is related to the fact that (1) cannot be valid for € that are, in an
appropriate sense, close to an endpoint of . It is also assumed that, for all
xe q, the function @ py(x) is twice continuously differentiable. 1 shall use
the abbreviations '

Mg = log pe(X)+log mo (0) ®
and
r(0)

0) = .
0(0) 7o)

9)
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We want to compare

"X

PY{@ < ¢,(X)} = o (10)
where
Pa(X)
A*= [ "9(0)do (11)
and
b
g% = [ e"9(0)do, (12)
with
a= P} :@<¢,(X)1=”(/. (13)
where
b4(X)
4= | &M0a0 (14)
and
b M
% =[e"do. (15)

Let us look at the details of the approximation ol .47* since it is somewhat
more complicated than the other numerator and the denominators. We have

B(X)

A*= | "% (0)do

$e(X)
= | ¢"[e(6)+(0-6)0(6)+(e(6)—0(6)—(0—6)¢(6))]db

Bl X)

=0(@) A4 +0(O)[ | exp(Mg+3(0—0)? Mg)(0—0)do +

P (X)
+ [ (exp(Mg)—exp(Mg+3(0—0) My))(0—O)do] +

dalX)

+ | " [e®)-0(O)-0-6)3(O)]1ds, (16)

a
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where @ is chosen to maximize the function 8~ M,. Similarly

b
g% = [eM9g(0)do

=0(0) % +Q(@)UexP(Ma+I(0 6)* Mg)(0—6)do+
b
+[ (exp(Mg)—exp(Ms+3(6—6)* Mg))(0--0)do] +

b
+[ M [0(0)—0(0)—(0-6)5(0)]ds.  (17)

Continuing to pursue our aim of comparing (10) with (13) we shall need,
in addition to (16) and (17), an approximation to ‘~ defined by (15). We have

b
g =[e"do

Il
D temn, &

b
exp(Mg+3(0—0)*Mg)d0 + [ (exp(Mg)—exp(Mg+3(0—O)2Mg))do

(18)
It will be useful to evaluate some of the terms in the above expressions

exphicitly. For the first term in % we have
b

jexp(Mé+%(0—@)2Mé)d0

a

2\/—2M_ "o [o(b—0)/—Me)-d(a—86)/-Mg)]. (19

For the second factor in the second term in the final expression for .4°* in
(16) we have

¢ L(X)
J exp(Mg+45(0—6)*Mg)(0—O)do

d

=_11w e"®(exp(3(¢ (X)— 0)*Mg)—exp(3(a—6)*My).  (20)

Similarly, for the corresponding term in the expression (17) for 7* we have
b

Jexp(Mg+%(9—é)2 Mg)(0—6)do

- 11‘.4AeMé(cxp(%(b—@)2M@)+exp(%(a—@)2M§)). 21)
- (]
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I shall write R, R,, and R; for the remainders in (16), (17), and (18),
that is

balX)
R, = 0(O) j (0—6)[exp(My)—exp(Mg+3(0— (9)21\1,;,)](1091L

@u(X)
+ | [e(0)-2(©)-(0-6)3(O)]e"ds, (22)

b b
R, = 0(6)[ (0—0)e"d0+[ [0(0)—0(O)—(8—60) 3(B)]™ds, (23)

and

b

R, = [ (exp(Mg)—exp(Ma+3(0—0)>Mg))db. (24)

Putting things together from (10)H(24) we find that

NN

Q* 2

PI{0 < ¢, (X)} — P, {0 < . (X)} =

6(©) w o
_“mexp(Mo+z(¢,(X) ©)2M )+ R + RE — AR -
B Z(1+R3) ;
where
R,
Rt =&y 26
' e (26)
* _ RZ
Ri= 0(0) P’ (27)
and
,_ 00)/2n ,
R =@ -y xp(Mg+3(a—6)*My). (28)

Using (18), (19), and (24) we also have for % (1+ R%) the expression

2(1+R3) = /—2:49 ®(1+R?) (29)




COVERAGE PROBABILITY OF CONFIDENCE SETS 491

where
N - —Ms -
Rt = —®((a—0)/—Mg)—[1-2(b—6)/— Mg)]+ / ®e" M8 gR1.
(30)
Finally it will be convenient to define
1 R?
* _ —1=—
R 1+ R¥ 1+ R? G1)
so that we can rewrite (25) in the form
1 0(0)exp(3(6.(X)—0) M)
PXie <¢, (X)) =a— - +R (32
{ } \/-MQQ(O) \/2n
where
R = R¥*+R}*+ R¥* + RY* (33)
with
R}
R¥*=—— 34
Y T g(1+RY (34
R3
Rf¢ = —— 35
* T 2(01+RY (35)
R%
R¥* = —— = 36
and
X 2
ree — _ gy 8O xp(:(9:(X)~6)*Me) -

e(0)  /2n(—My)
It follows from (32) that
P,{6 < ¢,(X)} = E, P¥{6 < ¢,(X)}

1 6(@)exp(3(¢.(X)—6)*Ms

,/—MOQ(Q) J2n

)n(O)d0+E R.  (38)

Let

Ry (6) = E, . 0@ exp(($.(X)—6)*Mg) _

’ ,/—M_ (©) J2n
1 . 1 66
TP ) ey

(39)
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Then (38) yields

_exp(—4[4™' @] 3(0)

1
P (0 < ¢,(X)) = _ 6) do —
{0 <¢,(X)} =a NG jv/ﬁﬂ) Q(g)n()

b

—JRB(B)dOJrE,,R

a

b
+exp(—i[¢"1(a)]2) f 1
NG

d
70 (6) d0 (7o (0) 1172 (0)] 7 (6) d0 —

a

b

—JRB(B)n(H)d6+E,,R. (40)

The final equality uses an integration by parts.

3. The case of independently identically distributed observations

Although it is clear that the results of Section 2 and their implied conse-
quences do not even require that the observations be independent it may be
useful to make these results explicit in the case of independently identically
distributed observations. I shall first bound the remainders without any
attempt at rigor and then look at some other aspects of the problem.
Thus we consider the case where X,,..., X, are independently ident-
ically distributed random variables, each with probability density function p§
with respect to a o-finite measure u. Here ¢ is an unknown real parameter in
the interval (a, b) where, as before, we may have a = — o0 or b = oo or both.
Fisher's information for a stngle observation will be denoted by I*, that is

5logp*(X1))2 E P logpf(X,)
cogp (X)) _ g 08P (X1)

’*(0)=E"( 0 207 )

Differentiability of the likelihood function and existence of moments of the
resulting derivatives will be assumed freely in the course of the argument.
Later I shall try to summarize the assumptions actually used. I shall also
assume that a= —oc and b = + oo, which can always be achieved by a
change ol parameter.

Some simplification is achieved by the assumption that a = — o and b=
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+00. In equation (2.19) the expression in brackets becomes 1 and conse-
quently the first two terms in the expression (2.30) for R¥ vanish. Also R}
vanishes. These simplifications and others that will be pointed out later do

not affect the order of magnitude of the remainder in (2.40).
Now let us look at the remainders of Section 2 systematically in their

final form. By (2.27) and (2.23) we have
R,
)

R% =

D)

o

[ [e(®)—e(@)—(0—6)(0))e" a8

- QO

m A M,
_@(é)_jm(e O)e d9+
Q(é) % My AT My

[ eM0ds 0(0) | "do,

B ¢)

1
o) o
n
In evaluating the first term in the next to the last expression 1 have used

traditional large sample theory to the effect that
Mg = —nl*(©)+0(n'"? 3)

and

T (0—6)e"0do = }3 (0—0) lexp(Mg+3(0—60)2 M)

— a0

+[exp(Mg)—exp(Mg+5(0—0)2Mg)]} db = ( qf eM“dG)-O(l/n). (4)

In (4) the integral resulting from the first term in braces and that resulting
from the term in brackets are roughly of the order of

Qf [e—é]wée’“ﬂde:(of " d6) 0 (1/n). (5)

The second term in the next to the last expression in (2) is evaluated
similarly by observing that it is of the order of

T 6—6) 5(6) e dp
- = 0(1/n). (6)

e(®) | €040
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Next from (2.34), (2.26), and (2.22) we obtain

R*¥* = R,
' e(®)2(1+RY)
¢y
o @) j (0—6)[exp(My)—exp(Ma+4(0— 6)2M 5)] dO
G @ *

(1+R%) j e"'? 46

an

[ [e®)—e(O)—(0—0) (&)1 db
+== —o(/m. (7

a

2(@)(1+RY) [ "°do

The argument is essentially the same as in the case of R%, except that we
also use the fact that R¥ is negligible.
Trivially
AR} aR%

Ry =~ Ga+rRy ~ 1xr: _OUM )

by (2.36), (2.13), and (2). We must. also look at
or _ RS 0(0)exp(3(4.(X)-0)’M)
® T14R20©)  /2n(—My)

The first equality uses (2.37) and (2.31). The evaluation of the order of
magnitude uses (2.30) which, with the first two terms vanishing as indicated
carlier, yields

= — M, e Mé _MO e Mé. ( 1 )
RE= [——° 5 9RE = | (@) O.ﬁ’ (10)

as in the verification of (2). This completes the sketch of the proof that the
remainder R in (2.32) is of the order of n~ !, This suggests that its expectation
E, R occurring in (2.40) is also of the order of n!.

In order to complete the evaluation of the remainder in (2.40) in the i.i.d.
@®

case we must look! at [ Rg(0)7(0)d0 where Ry is defined by (2.39). From the
asymptotic normality of the posterior distribution of @ with error of the
order of n”'? we have

= 0(1/n). 9)

Ay u _ 1
(¢:(X)—0)*Mg= —[® ‘(d)]2+0(ﬁ)- (11)

Fd
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Then, using (3) and the fact that
O—0 =0((n"?, (12)

we see that
ajo Ry(O)m(@)d6 =0(nY). (13)

Thus it follows that, in the iid. case,

j Po {8 < ¢.(X)} n(6)d8 = P, {© < ¢,(X)}

oo @) r I
o

It remains to look at the question of whether this implies that, for fixed 0,

d ) L
@O /Z(H)Jn(e)dew(;)- (14)

- @®

_ exp(__%[qp—l(a)]l)' 1 i -1/2 l
Py{f < ¢, (X)} =+ S 7o (0) d6 [mo(O) 1" (0)1+0( ).

(15)

My answer to this will perhaps be even vaguer than the treatment up to,
this point. First we must try to be a bit more precise about the dependence
of the remainder in (14) on n. Looking back over the detailed, computations
leading to (14) 1 am inclined to believe that, under appropriate regularity
conditions on the function 8+ p§ I could prove that, assuming logn, twice
uniformly continuously differentiable, we have, for all = satisfying the same
condition as m,

f Py (6 < (X)) m(0)d0

@

exp(—3[® ' (@)]?) 1 4 ~ )
+ o fno L Eno(0) 12 (8)] 7 (6) 6 +

(6)do
1 d n(6)
+0(ﬁ) f (W’gno(m

— a

)
462 57, (9)

+

)n(a)de, (16)

with the implied constant in the factor O(1/n) not depending on =. Withou;
further conditions, this does not imply (15). For example, in'the binomial
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case, (16) can be verified directly subject to appropriate end conditions on
and m, but instead of the remainder O(n~') we have an error of the exact
order of n~ /2 since the left hand side has jumps of this order but the two
leading terms on the right hand side are smooth.

4. The next term in the approximation

Let us compute the next term in the approximation of Section 2 without any
attempt at rigor. The notation and assumptions are as in that section except
that m, mo and 01 py(X) are assumed to be thrice continuously differentiable.
The result is

Pn 10 < ¢¢(X)}'_a
_exp(—3[® ' (@]?) '{E_EMO)(
h N 6 1' (6)

1+%M§‘ (e)tp—‘(a))—

_¢”wy1mwwnW) )
2 d01(0) {me(0)
where
().
MS =" = ?
with
M, = log py(X) +log 74 (6). (3)

It is left to the reader to verify that the error is formally O(n~*2) in the case
where X =(X,,..., X,) with X; independent identically distributed. I shall
need the integrals

1 _1 1 _1
N/ ,‘ te 2 dr = — e % (4)
2n 2
1 ' _L, 1 _15
— t2e"2dt = d(u)— ue 2°°, (5)
/2 J 2
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and

4, 312 4, _
tte 27dt =3P (u)—

L)

(W +3u)e 2", (7)

1 1
N 7

As in Section 2, we suppose ¢,(X) chosen to satisfy

-

a== 8-
where
Pa(X)
A= | ™0 do
bo(X)

~ [ exp(Me+3(6—0)Y M, +4(0-0) M, +...)do

Gg(X)
~e"® [ exp(3(0—6)> My)[1+L(6—6) M;]d8

- a

=e"® /an(—M,) T x

><[<1>(':ra.(x))—1 M 1(2+sr',%(X>)exp(~%':r’:(X))_J ©

6(—M)** /on

V
with
¥, (X) =/ — M; (¢ (X)—6), (10)
and
y My < 1 212 Mg 2n
Z2={e’df~ [ exp(Mg+3(0—-6)>M,)dd =e YR (11)
a - - 2

Thus, to this approximation
M3 1 2 1 2
5 (2+ P2 (X))exp(—1 P2 (X)). (12)
T

(M2 fox

We can solve this approximately for ¥,(X), obtaining

1
a = (D('I’,(X))—g

-1 1 M3 -1
Y (X)= P (a)+6w(2+¢ (@)>. (13)

32 —~ Banach Center L. L6
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As in Section 2, let us write 4™ and 2* for the analogue of (9) and (11)
with an extra factor of

n(0)
) = 14
e(9 7 ®) (14)
under the integral sign. Then
X A*
P10 < ¢.(X)} =5 (15)

and

$a(X)

[ "0(8)a8

¢a(X)
x [ €"[0(0)+(0-6)4(0)+3(0—6)§(O)]48

Pa(X)
~o(@) A+ [ exp(Me+1(0—0)* My)x

x[(8—6)¢(0)+1(6—-0) §(0)+4(0—6)* () M]db

6(0)

M) exp(—3 P2(X))+

- a(éM+(—Mz)‘%e"'{

1 0(9)

\/_a—‘P(X)exp (-3 P2(X)]+

10(9)M3

[3J_ (W2 (X)+ 3%, (X))exp(— %svj(x))]}, (16)

where ¥,, defined by (10), is given approximately by (14), and similarly

L[1E@) 5 160)M;,
< 0(6) 9 +(~M;) [2 AN T v \/z_n] (17

It will be convenient to define remainders R, and R, by

N* = o(@) N +R, (18)
and

P* = (@) 2+R,. (19)
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From the abovc we obtam to the dcsnred approximation,
N* 9(9)39+R1 ~ R; —aR,
7* " 0©)Z+R,  00)2

_exp(—3 'PZ(X))

PY{6 < ¢,(X)} =

&

J2me(6)
¢(O)  1§(O) 16(O)M; s
S 1 PO g a0 3.0

L, _op(=3e7 @)
J2me(6)

(O 1 M )
At (e @) e el o

The first equality is (15) and the second uses (18), (19), and (8). The first

approximate equality uses the fact that R, is small compared to ¢(&) 2, the

second uses (16)(19), and the final approximate equality uses (13).
Taking unconditional expectation we obtain

P, {€ < ¢,(X)} = E, PX{© < ¢,(X)}
exp(—3 [0 @) ;1

ST "e®)

¢(0) 1 My 14(6) ,_,
X{W[1+EW¢ l(a):,+5_M2¢ (a)} (21)

Let us first look at the leading term in the expectation.

1 4(6)
E'((-Mz)”za(é))
_E 1 [Q(@) ((Cf)) Q(9)>J
@) - (M, + 1O | 2(®) T \e®) " 0(®)
o I je@)f 1.4 0O) 6O
~E g ){ (@)(1 E( ) ( ©) a(@))}

b

5 ) 6

L) [(m®) x® (1050 0
1(©)¢(O) I'*(@) m,(9) do\I""*(0) /70 (0)

The remaining, smaller, terms on the right hand side of (21) are treated in a

similar way but without the need to introduce conditional expectations. This

completes the argument for (1).
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From (1) it is plausible that, to the same approximation, under appro-
priate regularity conditions,
exp(—$[#~ ' @]?) 1

S )

Ly wiogmi)_ 2@ 4 1@
(1+8M3(9)¢ (a)) 100 ] (23)

Pyl < ¢ (X)} = a+

d_ 7o (0)
* a0 [}1/2(9)

If, as 1n earlier sections, we choose

no(0) = /1(6) (24)

it becomes
Pﬂ{9<¢a(x)}
N exp(—3[? '(@))?) & (@) 1 1d . d> _1
~a+ NG > \/”7)[3EM3(9)—W1 2(9)]. (25)

5. A multiparameter case

Again without any attempt at rigor, I shall look at a multiparameter
analogue of the result of Section 2 in the special case where the confidence
sets are, to a first approximation, hall spaces. The notation is essentially that
of Section 2 with appropriate modifications. In particular the parameter
point 0 is assumed to lie in a specified convex subset 7 of R? (rather than R)
and 1(0) is Fisher’s information matrix, defined by

1,6 = Eaﬁlogag:,(X) alogaZ:(X). )
I shall choose a random set S,(X) to satisfy
Py, {@eS,(X)} =a, (2)
and I shall also suppose that, as a crude approximation
S,(X) = {0: n'(©)1(0)(8-6) <™ ' ()}, (3)

where @ is chosen to maximize 6 — 14 (0) po(X) and where 5 is a function
on J to RP such that

n(@I1@)n(d) =1 for all 0. (4)
The analogue of (24) is
exp(—3[2 " (@)]°)

o

1
P, {@cS, (X)) ~a+ JRO(B)(V’(RO m) (@)= (6)db. (5)

F
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Here of course V denotes the vector differential operator

[ 0]

a0,

and consequently

2 '1. ©

5‘1:09
(7 (ram)®) = 0(0) T 2> z (6T,

(7)

As in Section 2, (5) is interesting primarily because it suggests that in order
to achieve confidence coefficient a to within the accuracy indicated it suffices
to choose n, so that

V'(rom) = 0. (8)

We proceed as in Section 4 except that we are dealing with the
multiparameter case and do not require as much accuracy. As 1 have already
indicated in (2), we choose the S,(X) so that

a=P¥ (©€S, (X)}=% (9)
where
N = [ e"do (10)
Sq(X)

and
o= [ eMde, (11)

with
M,y = log [7o(0) pe(X)]. (12)

Our aim is to approximate P,{@¢cS,(X)} where = is a largely arbitrary
probability density (for the random variable @) with respect to Lebesgue
measure in .7 .

In order to do this, let
n(0)
no(ﬂ)’

and consider the posterior probability (under =)

e(0) = (13)

k.

PXl@e8,(X)} = .,

(14)
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where
A% = [ &"0(0)do (15)
SglX)
and
g* = [ "% 0(0)df. (16)
g

We approximate A4™* by
A*= [ "[2(@)+(e(O)—a())]d0

Sa(X)

xe(@) N+ | exp(Mg+(0—0O) Ms(0—0)(Fo(O)(6—-60)d6  (17)

S2(X)
where

S¥*(X)={0: 7 (©)1(0)(6—06) < ¢ '(a)}, (18)

which was assumed to approximate S,(X) in (3). But the integral in (17) can
readily be evaluated by imagining a random vector @* normally distributed
with mean @ (treated as a constant) and covariance matrix —Mz! (which,
for the limited precision needed here, may be identified with I™'(&). We
introduce two real random variables

Y = 7' (6)1(6)(6*-0) (19)
and
Z = (Vo (O)) (0*—6). (20)

These are jointly normally distributed with mean 0 and covariance matrix

(6)7e(6) )

R " R ~ - 21
n(O)We(O) (Ve(®) I '(O)(Fe()) 2

EG)(YZ)=(

Then

J/det1(©)

G’ Jexv(-%(9—@)’I(é)(e—é))(Vg(@))'(e—é)de

5,(X)
—EZF|(Y<d '(a)} =E(EYZ) £ {Y < ® ()}
=En' () Ve(O) Y £ Y < 0™ ' (a)}

=n'(6) Ve(é)-( —~ exp(—3[®* (a)]z)). (22)

1
N
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Thus (17) yields

(211)("_ 1)/2

) "(©) Ve @)exp(Ms—1[07 ' @]?).  (23)

N % g(O) N —

Similarly, to the same approximation, we have for 9* defined by (16)

g* x 0(0) 2. (24)
Thus (14) and (9) yield
‘/V’*
PY{0eS. (X)) =25
R (2Tr)(p-l)/2 R A
Q(@)JV—ITz(é)— ' (0) Vo(@)exp(Ms—5[07" (0)]%)
N NGE,
1 (211)("_ 1)/2 R .
RN TEIT 0 (@)Floge(@)exp(Me—3 [P~ ()]?) (25)

Finally we approximate %, defined by (11), by

?=| eM0dp ~ [exp(Mg+3(0—6) M4(0—6))do = e“"-(?'“)m. (26)
7 VMs

Then (25) becomes
P¥l@eS, (X)) xa—

1 A A _
\/2—'1’ (©) Vloge(®)exp(—3[P™ ' (@)]°). (27)
n
Taking unconditional expectation under n and integrating by parts, assuming
nm vanishes on the boundary of 4, we obtain

P,{@eS,(X)} =E,PY{O@eS,(X)}

_exp(—3[27 (@] E, ' (0)Vloge(®)

o ,_211:
exp(—i[® ' (@]} .
x~q— E.n(®)F] e
a N 7' (@) Vlog o(O)

_ a_CXP(—%[‘D“(a)JZ) Vn) Vmo()

= (@
VR ’[n(e) 7o (@)

T

Jn(@) do

n

+CXP(—5[¢"1(°!)]2)

1
\/Z—n J o (8)

T

(V' (mom) (@)= (6)d0, (28)

which is (5).
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As in earher sections this suggests that for 0 not too close to the

boundary of .7, subject to appropriate smoothness conditions on the distri-
bution of X, we have

exp(~3[9 ' (@)]?) 1

Py {0eS (X))} ~a+ \/2_1[ " (0)(7’(n0 m)(0). (29)

6. The first-order autoregressive process

A good illustration of the results of Sections 2-4 would be provided by a
careful detailed treatment of the problem of estimating the autoregression
coefficient of a first-order autoregressive Gaussian process. The present
section is merely a sketch of the more obvious features of the problem. I
start with the usually unrealistic case where both the mean and the residual
variance are known. This simple case gives a roughly correct picture of more
realistic models as long as we are not interested in an autoregression
coefficient close to +1. Then I consider the case where the residual variance
is known but the mean is unknown, using Pitman’s method to eliminate the
unknown mean. The computations are heavy and fairly difficult to interpret.
I have not attempted to discuss the case where both the mean and the
residual variance are unknown. '

The stationary sequence of real random variables {X,}, for integral t, is
assumed to be distributed in such a way that the

Uy =(X—-8)—a(X,_, =) (1)
are conditionally normally distributed with mean 0 and variance 1 given the
past, (X,_, X;_;,...). Here « is an unknown real number with

-l <a<, (2)

and for the present I assume ¢ known. From the fact that the variance of X,
is (1—a®)~! we see that the joint density p,, of X,...X, with respect to
Lebesgue measure in R" is given by

1—a?

Pae(X) = WCXP(—%[(I —a?)(x, —&)* + Z ((x,— O a(x—1 = &)])

J1—a?

= g P (4~ 9 (5= O+ (4 T (5=

20 ) (5 =8(x-1~§]). (3
t=2

Without essential loss of generality I take & = 0.



COVERAGE PROBABILITY OF CONFIDENCE SETS 505

Now let us compute Fisher’s information /(). Since

82 1+C(2 n—1
—1 = —— 2 4
6&2 Og pd(x) (1 _az)z I=zz xl 2 ( )

we have

02 1+a? n-2
I(%) = —E— log p,(X) = .

(3)

Thus the choice of n, to which we are led by the considerations of Section 2

1S
[ 1+a®  n=2
o () = (1—a2)2+1—a2
—2V (-2(—a)
=\/1+a2\/1+(n—2)(1—a2).

(6)

The second line of (6) indicates that, for large n, ny; can be approximated by

o) =

— (7)
except in the neighborhood of = = +1. The third line suggests, less firmly,

that in the neighborhood of @ = +1, n, can be approximated very roughly
by

To®) x5 ®)

1—a

We shall see later that, when & is unknown, the behaviour of the information
is drastically different from the above in the neighborhood of « = + 1, but
rather similar in the neighborhood of « = —1. Presumably this reflects the
fact that if « is close to —1 we can estimate the unknown mean quite
accurately but if a 1s close to +1 we cannot. In the latter case most of the
information about a (when ¢ is known to be 0) comes from the magnitude of
the average of the X, or even from any one of the X,. The function I given
by (5) is symmetric about 0, reflecting the fact that if we define

Y =(-1'X, ®)

the autocorrelation coefficient of the {Y;} is —a. Of course this symmetry is
lost when the known & = 0 is replaced by unknown ¢.
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Now let us look briefly at the difference (in the case of large n) between
the choice of ny given by the approximation (7) and the often thoughtless
choice

7o = C, (10)

a -constant. From (3) with ¢ =0 we see that the choice (7) leads to a
posterior distribution of a (assumed not to be close to +1) that is normal
with mean

Z Xr Xl—l
4= (11)

and variance

n~-1
olx() X '=x (12)
2

But, in the neighborhood of 4,

-~

1 |
J1—a? =exp(~log(1—a2) x exp| zlog(l —a%) - aAz(a—o‘z) , (13)
2 2 1—a

so that, still with & = 0, the posterior density of « is roughly proportional to

1 n—1 n -
exp(—i[az ; Xf—za(g X,X,-,—&)D. (14)

Thus to a first approximation, the effect of the choice of (10) is to move the
center of the posterior distribution from (11) to

7 1
& =4 LN (1-;)5. (15)
(1—-a%) Y X7
2

The ratio of the magnitude of the shift of the center to the standard
deviation of the posterior distribution is roughly [n(l —a?)] /2.

For the case of unknown £, I shall merely sketch the computation of the
information and comment on it very briefly. By a well-known argument of
Pitman (1939), the joint density of the differences

Z,=X,4,— X, (16)
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for re{l,...,n—1}, with respect to Lebesgue measure in R*™!, expressed in
terms of the original variables, is given by

[e 2}

—

) 1 1+
QI(x) = J Pe.c d§ = (27[)("_ 1)/2 \/n—(n—Z)cx x

- a

1 n—1 n
xexp(—E%xf+x,f+(l +a?) Y xF—20) X, X —
2 2

n—1
(1= [x; +x,+(1—0a) ¥ x,]?
_ 2 }) (17)
n—(n—2)a
Thus
0%logq,(x) _ 1 n-2* J,
B R T T e M
(l—a)(i x,)? 4(i x)[x1 +x,+(1 - i %]
+ 2 L2 2 _
n—(n—-2a [n—(n—-2)a]?
2(n—2) =
Tt 2)aT [x;+x,+(1—0) 22: x]?.  (18)

After quite a bit of computation we find that the information for this
problem is given by

3 loggq,
I(Cl) = “Ea- ogaqz (X)'_
n—2 2(n—2) 200(1 —a" " 2) 1

(19)

= _— + + ¢
1—a? [n—-n-2a](l—a) [h—(n—-2a](i—ad)(l—a) 2(1+a)
Let us look at the order of magnitude of (19) when n is large. The
-2
leading term for « bounded away from +1 is the third term —-—ln et in
agreement with the result (5) for the case of known &. The last term in (19) is
important only in the neighborhood of — 1, where the behaviour of I is also
essentially the same as in the case of known &. However, in the neighborhood of 1
the present situation is quite different from the case of known £.
In order to study the behaviour of I in the neighborhood of 1 it is
convenient to put

1P
a=1-—t, (20
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and, in evaluating the third term on the r.hs. of (19) to use

l_an_z=(1—e—ﬂy+[e-ﬂ_(}__nfz)r4]. (21)

After some computation we find that

2 B 2 8 )
I(l— B )=2(n—2) [(l_n——a)(l_ﬂ)+7_(l_m)e ,,]

(2+ﬁ)(2— P )ﬂz

n—2
ﬁ - ﬁ n—-2
i G K o) B
B | B \?
(2+ﬁ)(,7_—'7_—2-)[i¢2 2(2—n_2)
- Tl + T2+n, (22)

say. For @ > 0, that is f <n—2, all terms are positive and, subject to an
unimportant qualification, the second and third terms are negligible.
For small B,

(n—2)°p
T ~——" 23
L~ (23)
while for large S,
—2)? -2
L~ _nm2 (24)
8(2- B |l —a
n—2
It may be useful to observe that
—N2(]— 1p2_ ,— 8
T. _(n=2)%( ﬂ+7zﬁ e )’ (25)
(2+P)B
uniformly for bounded B. For the second term in (22) we have
n—2
— -8
T, O(2+ﬁe ) (26)

uniformly for f < n—2. Finally, for the third term we have

Ty =0(), (27)
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again uniformly for § < n—2. Thus 7, and T; are negligible compared to T;,
for « >0, that is f <n—2, with the unimportant exception that for f

=0(n" '), T, = O(n)'while T, is of the exact order of n and T; of the exact
order of 1.

7. The squared distance of the mean of a multivariate
normal distribution from the origin

In this section, my aim is merely to indicate that, at least in this special case,
the approximate result of Section 5 is not hopelessly inaccurate. For this
purpose I shall try to compare two approaches to the problem described in
the title of this section:

() the multiparameter approach of Section 5.

(1) the one-parameter approach of Sections 2 and 3 applied to the
sample point |X|%.

In Stein (1959) two other approaches are contrasted:

(iif) confidence sets having the correct probability of coverage, at least
asymptotically in the dimension p.

(iv) sets obtained from the posterior distribution corresponding to
constant prior “density” for £.

Since the case of n observations is isomorphic to that ol one dimension 1
shall, for notational simplicity, consider only the latter case at first. The
notational changes required for comparison with the asymptotic theory (in n)
will be indicated at the end of this section. In the present paper I shall only
sketch the comparison of the two methods described above. I believe that the
second approach gives essentially correct results (in the sense of (1)) except
for the end effect at |{£| = 0. I hope to complete a more careful treatment of
this question and the material of Section 6 before too long.

Let X be a p-dimensional normal random vector with unknown mean ¢
and the identity as covariance matrix. We want to obtain confidence sets for
|€|%, or equivalently, confidence sets for ¢ of the form

S.(X) = {&:1¢]? < ¢, (X)) (1)

Because of the invariance of the problem under orthogonal transformations,
it is reasonable to choose ¢, of the form

¢.(X) = X (XI?). (2)

Let us first look at the approach labelled (1) above, that of Section 3.
Fisher’s information matrix is the identity matrix and the vector field n for
which the confidence sets described by (1) and (2) can be approximated
crudely by (5.3), that is

S(X) = {& H(EE-E) < @ ()}, (3)
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is given by

_<
n(é) = Bk

(4)

Thus n(&) is a unit vector in the direction of £. Of course, in (3), Z is chosen

to maximize
£ =g (&1 exp(—3X—£)
where the prior density m, of Section 5 is given by
mo (&) = m§ (1€1%).
With

g (IE1°)

2y _
B(ZIY) = R

the condition (5.8) becomes

0= [na(le;l’)%

The solution of this is
BUE®) = 1€177,

that 1s

7o (§) = m§ (151%) = 1&7 P71,
Thus the suggested confidence sets are

S (X) = {&: 1817 < o2 (X|Y)
where ¢*(1X|?) is chosen to satisfy

a = P} {18 < oF (1X1%)}

ng L
—(p— —|X—-&2
|E|= P~ Ve x-¢i lld£
_ &2 <d501xDD

{ |E] 7P Ve~ 1X- %2 g
RP

¢.0X12)
0_(p_1)/ze_|x|212 i (%|X|2)k BP/Z—E—I e
o k! T'(Gp+k)

f 9—(p—1)/ze_|x|2/2 f (.%IXIZ)I: 91-/12—1:—1 ,
=0 kI TGp+h)

- @®

-0

] = V'(B(E1Y) €) = pBULIY) +2121* B (1L

(3)

(6)

(7)

(8)

(9)

(10)

(11)
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A ¢,0X12)
> FIX19) u—% —o
Zoargprn | 0 e
= T (12)
'] lx2k

k=0 K! (3 p+k)

The approach labelled (ii) at the beginning of this section, the reduction
to a one-dimensional problem by use of orthogonal invariance, is presumably
better. We consider |X|® as the observed sample point and note that its
distribution depends on & only through

0 =& (13)
Although it does not seem easy to compute the information in this problem,
we can approximate it by the reciprocal of the variance of |X|2—p which is
an unbiased estimate of 6 = |£|2. This approximate value is
I*(6) = (2p+46)~'. (14)
The density of
Y =1|X)? (15)
is given by
@ (_%9)1: yp/2+k—1

_ ,—8/2
Po0) = e Y S TEr R

for y > 0. Thus, in the spirit of Section 2, the approximate upper confidence
point is given by ¢X**(/X|?), determined by the condition that, with

e ¥? (16)

7, (0) = 2p+40)~ 112, (17)
we have
@, (xi2)
,[ Po(IXIZ)M(G)dO
o =— . (18)

f Po(lXIZ) ny (0)do
0

This equation for the determination of ¢** differs from the equation (12) for
the determination of ¢, which can be rewritten as

#(1X12)
[ pe(1X1?)db
a=— (19)

J Po(1X1%)d6

only by the presence of the factor =, ().
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It remains only to verify that, when these results are expressed in terms
of large samples, the first and second approaches differ only by the order of
n~ 1. Thus let Y,,..., Y, be independently normally distributed p-dimensional
random vectors with common unknown mean n and covariance matrix equal
to the identity matrix. Then

™=

X = Y (20)

1
Jn
will be a normally distributed p-dimensional random vector with unknown
mean

£ = /nn (21)

and covariance matrix equal to the identity matrix. Thus 0, defined by (13) is
0 =& = niyl?, (22)

and consequently
,(0) = 2p+4ninl®)” 12, (23)

Locally this differs from a constant by a term of relative order n .

8. Closing remarks

In this section I shall try to indicate some of the directions in which I think
it may be useful to carry out further work on this subject. Before doing so I
shall sketch an argument which indicates that the results of this paper, with
the possible exception of Section 4, also hold conditionally given an ap-
proximately ancillary statistic. As I mentioned earlier, the applicability of the
present method to this question was suggested by Brad Efron when I
lectured on this question at Stanford University.

For definiteness 1 shall consider the case of Section 3 where we have one
unknown real parameter and a large number n of independent identically
distributed observations. The result sketched here was obtained by Hinkley
(1980) by a different method. See also Cox (1980). Of course the fact that I
consider this question should not be interpreted as advocacy of the principle
of conditionality.

With the notation of Section 3, let

T™ < 7(X,,..., X,) (1)

be a real-valued approximately ancillary statistic in the sense that it has a
probability density function p{" that is nearly independent of . A more
nearly precise meaning will be given to this statement in the course of the
discussion. The conditional density (x, t)> p” (x|t, 8) of X =(X,...X,) given
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T, with respect to an arbitrary measure, has the form

1—[ ps (x;)
=(n) — 1
P (xlt, 0) = v(x)—(—
Py (1)
where the function v does not depend on 6. We want to know whether the
conditional probability (for each 0) of coverage given T of the confidence sets
determined [rom =,, defined by

(2)

o (9) = \/I (9) =\ nl* (9): (3)

still differs from a by OGI) under appropriate regularity conditions.

The regularity conditions sketched roughly in Section 2 and, for the case
of independent, identically distributed random variables, in Section 3 de-
pended on the derivatives of the likelihood function and on expectations of
these derivatives. Let us go through the final remainder terms in Section 2
and study the effect of the transition from the unconditional to the con-
ditional distribution. From (2.27) and (2.23) we see that, for this transition to
have no substantial effect on R¥ it will suffice that for every pair 8, ¢ € 7,
with high probability

P (T™)

hoe 43

P ()| = @

(or any other constant), and ol course this could be weakened. The same is
1

true of RT* as discussed, for example in (3.7), provided the O (—) is achieved
n

even with 0—@ replaced by its absolute value. The same is also true of

R** as discussed in (3.8).

For R%¥, and thus also for R¥, as discussed in (3.9) and (3.10), the orders
of magnitude will remain the same provided that for all 6, with high
probability,

02 log pi? (T™)
262

<1. (5)

Finally we must look at the more difficult Rg(0) defined in (2.39) and
evaluated around (3.13). For (3.13) to remain valid, after the transition from
unconditional to conditional distribution, it should suffice that, again with
high probability,

(6)

l‘r )
un

02 lOg p};’”(T‘")) 1
o o\,

33 — Banach Center t. 16
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In summary, conditions (3) and (5) should suffice for the conditional pro-

bability of coverage to remain a+ O (%) when the same is true of the
unconditional probability of coverage.

The most urgent need for extension of this work occurs in the multipara-
meter case because it is here that crude asymptotic theory usually fails most
spectacularly. It would be very useful to work out a number of examples,
even in the same rough way as in Section 7. The work of Section 5 ought
also to be developed to at least the (still low) level of rigor of the treatment
of the one-parameter case in Sections 2—4. It would also be desirable to study
confidence sets of arbitrary shape, especially the roughly elliptic case centered

near the maximum likelihood estimate. Here the error in the probability of
coverage is 0(—) but this is still often unsatisfactory. Thus this situation
n

should be studied with at least the precision of Section 4.

Much remains to be done even in the one-parameter case. First, a
number of spectal cases should be worked out carefully and the results
should be compared with serious Monte Carlo studies or direct computation
of the probability of coverage. This work has not yet been carried out even
in the case of the autoregression problem studied in Section 6. In addition
the program of Section 3 should be carried out rigorously.
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