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Occupancy models for equal or unequal objects distributed into equal or
unequal cells can be represented by random partitions of integers or sets and
also by randomly colored and labeled graphs. Applications of occupancy
models to statistical disclosure control and to cluster inference in random
graphs motivate an interest in entropies of occupancy distributions. We
determine and compare entropies of various distributions encountered in some
classical and recent occupancy models.

1. Introduction

Occupancy models refer to random distributions of equal or unequal objects
into equal or unequal cells. Such models are useful in different kinds of
applications, and they are also referred to as urn models (Johnson and Kotz,
1977) and allocation models (Kolchin, Sevast’'yanov and Chistyakov, 1978).

If n equal objects are distributed into ¢ equal (unequal) cells, the
occupancy pattern can be represented by an unordered (ordered) partition of
n into ¢ nonnegative integers. If n unequal objects are distributed into ¢ equal
(unequal) cells, the occupancy pattern can be represented by an unordered
(ordered) partition. of an n-set into ¢ disjoint subsets.

Our purpose is to investigate entropies of random partitions of integers or
sets. The entropy of a random partition is a convenient measure of variation
that has applications, for instance, in statistical disclosure control and in cluster
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analysis of random graphs. The next section comments briefly on these
applications in order to provide some motivation for considering entropies of
random partitions. Section 3 surveys some classical and recent occupancy
models. Section 4 contains results on various entropies for different kinds of
uniform occupancy models, and Section 5 contains results on entropies for the
general multinomial occupancy model.

2. Applications to disclosure control and clustering

We consider briefly two fields of applications for entropies of occupancy
distributions. We refer to Gallager (1968) for general information theory and
basic facts about entropy that are needed.

General statistical disclosure is discussed by Fellegi (1972) and Dalenius
(1974). Frank (1976) investigates disclosure in frequency tables. Consider
n individuals classified according to a categorical distribution into ¢ categories,
and let x,, ..., x, be the category labels of the individuals and y,, ..., y. the
frequencies in the categories. A particular disclosure control problem is to
measure how protected the individual data x,, ..., x, are if the frequencies
Y1, ---» Y. are released. By setting up a stochastic model for the data, i.e. by
assuming that x,, ..., x, are observations on random variables X, ..., X,
a possible approach is to consider the entropy of X, ..., X, conditioned by
the given frequencies y,, ..., y. as a measure of individual privacy. Frank
(1978, 1979) discusses disclosure in frequency tables when prior knowledge is
also taken into account. Prior knowledge may for instance be used to estimate
which individuals belong to the same categories. This specifies a partition of
the n-set of individuals without specifying the categories. Disclosure then
amounts to matching the sizes of the subsets of the partition to the frequencies
Y1s---» Y- This problem depends on the frequencies of different frequencies
among y,, ..., y. only, say on z,, ..., 2, where z, is the number of categories
containing exactly k individuals. The relevant entropy could be the entropy of
X,,..., X, conditioned both by the frequencies y,, ..., y, and the partition of
the n-set.

Another field of application is to statistical inference about clusters. Data
can for instance be similarity measurements for all pairs of objects in an n-set.
In cluster analysis it is desired to use the similarities to group the objects
together into an ‘unknown number ¢ of subsets (clusters) of similar objects.
A possible model for the similarities could be a random graph generated by
some latent clusters. Frank and Harary (1982) discuss such an approach to
clustering with applications to linguistics (McNeil, 1973) and ecology {Engen,
1978). Inference problems concern the number of clusters, their expected sizes,
their entropies, etc. Even some very simple random graph models lead to
complicated probabilistic problems. Simple models are, for instance, the
so-called random transitive graphs which have the objects as vertices and all
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pairs of objects in the same clusters connected by edges. Such graphs represent
unordered partitions of the object set. Information about the clusters inherent
in an observed graph could be measured by the entropy of the graph.

3. Occupancy distributions

Consider n equal or unequal objects distributed at random into ¢ equal or
unequal cells. Let the objects and cells be labeled by integers 1,..., n and
1,...,c, respectively. Let X =(X,..... X,) denote the cell labels of the
n objects, Y =(Y,,..., Y) the frequencies of objects in the ¢ cells, and
Z=(Z,, ..., Z,) the frequencies of cells occupied be exactly 0, ..., n objects,
respectively. Let G be the graph on the n-set with an edge between objects
iand j il and only if X, =X,

In partition terminology (Andrews, 1976) X represents an ordered
partition of an n-set into ¢ disjoint subsets, G represents an unordered
partition of the n-set into at most ¢ nonempty disjoint subsets, Y represents an
ordered partition of n into ¢ nonnegative integers, and Z represents an
unordered partition of n into at most ¢ positive integers. It follows .that the
numbers of outcomes of X, Y, Z, and G are ¢*, ("*¢7)), Y5-1P(n, k), and
Yi=1S(n, k), respectively, where P(n, k) denotes the number of unordered
partitions of n into k positive integers, and S(n, k) the number of unordered
partitions of an n-set into k nonempty disjoint subsets. S(n, k) is a Stirling
number of the second kind.

In graph terminology (Harary, 1969), X represents a colored labeled graph
(c colors and n labels), Y a colored unlabeled graph isomorphic to N, Z an
uncolored unlabeled graph isomorphic to X, and G an uncolored labeled graph
isomorphic to X. Figure 1 shows the number of ways to color and label the
graph Z.

According to the classical Maxwell-Boltzmann model, X has a uniform
distribution on its ¢” outcomes. This means that equal probabilities are given to
all distinct occupancy patterns for n unequal objects into ¢ unequal cells. Y has

n
Coutcomes x = n!/_]'lk!"lobelings oty D outcomes y
i
X Y
c! . ‘ .
a=== colorings of g 8=c!/TI z,! colorings of z
Zg! ' 1)
G 74

n
Boutcomes g S=nl/TIk1™z,!)labelings ot z A outcomes z
k=

Fig. 1. The number of ways to color and label a graph
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a multinomial distribution with integer parameter n and with ¢ equal :ategory
probabilities 1/c. The probability function of Z is given by

In!

(1) PZ=2=—"
" I] (k!*z,)
k=0
for all z = (z,, ..., z,) satisfying
(2) Zgy -9 2,20, Zog+...+z,=c, z;+2z,+...+nz,=n.
The number K = Z, +...+Z, of occupied cells has probability furction
c!S(n, k)

3 PK=k=—— fork=1,...,c
)] ( ) c—Ri o ¢

This distribution is sometimes called Arfwedson’s distribution (Johnson and

Kotz, 1969, p. 251). Finally, the Maxwell-Boltzmann model implies that G has
probability function

c!
@ PG=9)= o
for each labeled graph g having k components.
According to the classical Bose-Einstein model, Y is supposed to have
a uniform distribution on its (®*¢™') outcomes. This model gives equal
probabilities to all distinct occupancy patterns for n equal objects into
¢ unequal cells. It follows that Z has probability function

c!

(n+c—l) ﬂ 2

n k=0

(5) P(Z=2z)=

for all z satisfying (2). The number K of occupied cells has a hypergeometric
distnbution:

(0=
k/]\n—k
K=k="——"7Z
(©) P ) n+c-—1

n
The Bose—Einstein model together with the assumption that all labelings of
Y are equally probable implies that G has probability function

for k=1,...,c.

clic—1)! l:] k1

R k=1
Y P(G=9)= (n+c—1)z,!
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for each labeled graph ¢ isomorphic to the unlabeled graph z, and X has
probability function

(c—1)! T k=

®) P =x)= (n+ck:11)!

for each x isomorphic to z.

Another classical model, the Fermi—-Dirac model, assumes that n < ¢ and
that Y is uniformly distributed on the () outcomes that correspond to the
ordered partitions of n into ¢ binary digits. The Fermi-Dirac model permits no
multiple occupancy, and with this restriction it gives equal probabilities to all
distinct occupancy patterns for n equal objects into ¢ unequal cells. The
frequencies in Z degenerate into Z, = c—n, Z, = n. The graph G degenerates
to the empty graph on n vertices.

A random partition model investigated by Harper (1967), Haigh (1972)
and Recski (1976) assumes that n < c and that G has a uniform distribution on
the B, = ) 1- S(n, k) unordered partitions of the vertex set (B, is the so-called
Bell number). According to this model, it follows that Z has probability
function

n!

9) P(Z=2)=

B, [ k'*z,)
k=1

for z satisfying (2), and the number K of components of the graph G has
probability function

S(n, k)

(10) P(K =k)= for k=1,...,n.

n

A generalization of this model without the restriction n < ¢ is obtained by
assuming that G is uniformly distributed on the

(11) Bn,d)= ¥ S(n, k)

unordered partitions of the n-set into at most ¢ nonempty disjoint subsets.
Then (9) holds with B, replaced by B(n, c¢), and (10) is replaced by
S(n, k)

(12) P(K =k)= B(n. o)

for k=1, ...,c.

The uniform G-distribution, together with the assumption that different colors
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are assigned at random to the components of each outcome of G, impies that

(13) P(X = x) = —20
~ 7 ¢lB(n, ¢
for each x with ¢—z, components, and
nlzy!

(14) P(Y=y) =

c!B(n, c) 1:[ k1%
k=1

for each y isomorphic to =.

The Maxwell-Boltzmann mode} has a uniform X-distribution, the Bose
~Einstein model has a uniform Y-distribution, and the generalized Harper
~Haigh—Recski model has a uniform G-distribution. If we now consider
a model with a uniform Z-distribution, together with the assumption that each
outcome of Z is labeled at random and independently colored at random, then,
for each x, y, and g isomorphic to z,

l:[ (k!*z,!)
(15) P(X =x)= isz'_ff(n,_c)
f] z,!
(16) P(Y =y)= c_:;_(()n_ﬁ
[T tktez)
(17) P(G=g)= L;'_I_AG_E')—
where
(18) A(n, o) = uil P(n, k).

All these distributions are easily obtained by referring to Fig. 1. In order to
simplify notation we shall use the following notation for the four numbers of
choices given in Fig. 1:

a=a,=clz,), y =1y, =nY ] k!I*,
(19) k=1

B=B=ny[[ kgD, 5=6=ci]] 2!

k=1 k=0
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The total numbers of outcomes of Z, G, X and Y are denoted by

A=A(n,c)= i P(n, k),

B=B(n,c)= zc: S(n, k),
k=1

20
20 C=C(n,o)=c",
D=D(n,c)= (c+n—1).
| n
We note that aff = yé and
(21) YB.=B, 3%6,=D, 3} aB.=Yyd.=C,

where all sums are over 4 values of z.

4. Entropies under different kinds of uniform occupancy

In this section we consider the four models specified by assuming uniform
distribution of X, Y, G, or Z and, if appropriate, also uniform colorings and
labelings of their outcomes. Table 1 summarizes the probability functions of X,
Y, G and Z under these four models. The models are referred to as MB, BE,
HHR, and FN. For all four models we have

Table 1

Probability functions of X, Y, G and Z under four
different uniform occupancy models

X Y G VA

1 ¥ a af

MB c c ¢ c
BE 1 1 =z s
yD D yD D
1 B 1 B

H — L - L
HHR aB éB B B
FN 1 1 1 1
A OA pA y

P(X = x) = P(Z = z)/up,
(22) P(Y = y) = P(Z = 2)/5,
P(G = g) = P(Z = 2)/B,
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if x, y, and g are isomorphic to z. In order to give formulas for the entrepies we
introduce the function

_|—plogp if p>0,
(23) o) = {0 oo
so that the entropy of Z is

(29) H(Z) =Y ¢(P(Z = 2)).

Table 2 gives the entropies of X, Y, G, and Z under the four models MB, BE,
HHR, and FN.

The information about X gained by observing Y =y is equal to the
entropy difference

(25) I(X1Y =y)= HX)-H(X|Y = y),

where

(26) HX\Y=y) =Y o(P(X =x|Y = y))
Table 2

Entropies of X, Y, G and Z under four different uniform occupancy models

b's Y G z

MB logC );&P(?/C) gﬁw(a/c) );fp(aﬁ/C)
BE gaﬂfp(ll}'D) logD gﬁtp(a/rﬂ) grp(ﬁ/D)
HHR Zz:aﬂtp(llaB) );pr(ﬁ/éB) logB 22140(5/5)

FN  Yofe(l/apd)  Top(1/64)  Ypp(1/fA)  logA

z

is a conditional entropy. Positive information corresponds to reduced entropy,
and negative information to increased entropy. The expected information is
always nonnegative and equal to

(27) EI(X|Y) = H(X)-EH(X|Y),

where I(X|Y) and H(X|Y) denote the information and conditional entropy
considered as random variables of Y. Now, generally we have

(28) EI(X|Y) = EI(Y|X),

and, since Y is a function of X, EH(Y|X)} = 0. It follows that the expected
information about X provided by Y is given by the entropy H(Y). From (25) it
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also follows that the variance of the information I(X|Y) is equal to the
variance of the conditional entropy H(X|Y), i.e.

(29 VIX|Y)=VH(X]|Y).

(It is common in information theory not to consider variances but only
expected values of conditional entropies; our notation EH(X|Y) is then often
simplified to H(X|Y).)

Since G is a function of X, and since Z is a function of either one of Y and
G, we find analogously that the expected informations about X provided by
G and Z are equal to the entropies H(G) and H(Z), respectively.

LEMMA 1. Under each of the models MB, BE, HHR, FN we have
HZ|Y=y)=H(Z|G=g)=H(Y|X=x)=H(G|X =x)=0,
H(X|G =g) =loga, where g is isomorphic to z,
H(G|Z=z)=H(G|Y =y)=logB, where y is isomorphic to z,
H(X|Y =y)=logy, where y is isomorphic to z,
H(Y|Z=2z)=H(Y|G=g)=1logd, where g is isomorphic to z,
H(X|Z = z) = log(a.8.),

H(X|Y=y,G=g)=log(a,/0,) where y and g are isomorphic to z.

The conditional entropies in this lemma are easily obtained from Table 1.

Using Lemma 1 and basic properties of entropies we can readily prove the
following theorem. We can also prove it directly from Table 1 by using (23).

THEOREM 2. Under each of the models MB, BE, HHR, FN we have
H(G) = H(Z)+ Elog$,
H(Y) = H(Z)+ Elog$,
H(X) = H(Z)+ Elog(ap).

THEOREM 3. Under each of the models MB, BE, HHR, FN we have
H(Z) < H(Y) < H(X), H(Z)< H(G) < H(X),

—logE(l/a) < H(X)— H(G) < logEx,
—logE(1/p) < H(G)—H(Z) < logEB,
—logE(1/y) < H(X)—H(Y) < logEy,
—logE(1/8) < H(Y)—H(2) < logES,
—logE(8/B) < H(G)—H(Y) < log E(B/8).
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Proof. The first four inequalities follow from Theorem 2 since «, f, 7, and
6 are = 1. The last inequalities give the logarithms of th® harmonic and
arithmetic means as bounds to the logarithm of the geometric mean of a, £, y,
&, and f/d, respectively.

COROLLARY 4. The following holds under each of the models MB, BE,
HHR, FN. If E(B/d) < 1, then H(G) < H(Y). If E(6/B) < 1, then H(Y) < H(G).
In particular, under the BE-model, B < D implies that H(G) < H(Y), and under
the HHR-model, D < B implies that H(Y) < H(G).

Remark. Any one of B and D can be the largest. For instance,n = 5,¢c =3
yield B=41, D=21, and n=5, ¢ =4 yield B=51, D = 56.

Let P = P, denote the probability function of Z under any one of the
models MB, BE, HHR or FN. Then H(Z) = —Elog P, and by applying the
harmonic-geometric-arithmetic-mean inequalities to the expressions for H(G),
H(X) and H(Y) given by Theorem 2, we find the following bounds, which are
sometimes sharper than the bounds that can be obtained from Theorem 3.

THEOREM 5. Under each of the models MB, BE, HHR, FN we have
0< H(Z)<logA, with equality to the right iff FN holds,
—logE(P/B) < H(G) < logB,  with equality to the right iff HHR holds,
—logE(P/af) < H(X) < logC, with equality to the right iff MB holds,
—logE(P/8) < H(Y) < logD, with equality to the right iff BE holds.
COROLLARY 6. Under each of the models MB, BE, HHR, FN we have
H(Z2)=0(/n) for n>w,
H(G) = O(nloge) for ¢ =0(n), n—> o,
H(G) = O(nlogn} for n— oo,
H(Y)=0(m) for c=0(n), n— o,
H(X) = O(nlogc) for n— .

In particular, under the FN-model with c = n
H(Z) = n/2n/3—10g(4,/3n) +0(1),
under the HHR-model with c = n
H(G) = logB, = O(nlogn),

under the BE-model with c=n

H(Y) = (2n—1)log2~log/nm+o(1),
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under the BE-model with ¢ fixed
H(Y) = (c—1)logn—log(c—1)! —(c— 1)+ o(1),
and under the MB-model
H(X) = nlogc.
Proof. We note that

(30) A(n, c) < A(n, n) ~ NG ITE]

4\/§n

(see, e.g., Andrews, 1976, p. 70), and the results for H(Z) follow from Theorem 5.
The results for H(G) are based on the following upper bounds for B:

(31) B(n, C)\guB(n’ n),
(32) B(m, )=} S k< Yy (n—l)k"_k <Y ("‘1) <Pl
k=1 k=1 \k—1 = \k—1

The results for H(X) are immediate from C = ¢". Finally, the results for H(Y)
follow from an investigation of D = (“*"~!); for finite c

(33) D ~ (nfeyf ™} /(c—1)!
and for c—» o and n—- o
(34) D~ (n+c—1p+e- 12 ym¥ti2(c 1y~ 12 [/og,

5. Entropies under general multinomial occupancy

Throughout this section we assume that X consists of independent identi-
cally distributed random variables with probability function P(X; =j) = p,
satisfying p,, ..., p.>0 and p,+...+p, = 1. This model implies that Y is
multinomial (n, p,, ..., p,), and it is usually referred to as the general
multinomial occupancy model. Kolchin, Sevast’yanov and Chistyakov (1978,
Chapter 3) investigate the asymptotic behavior of the probability distribution
of Z when n and c tend to infinity and various restrictions are imposed on n, c,
Pys...» P.. For p, =...=p.= 1/c we recover the MB-model.

Most of the assertions of Lemma 1 are still valid for multinomial
occupancy. The following lemma is easily proved.

LEMMA 7. Under multinomial (n, p,,..., p,) occupancy Z and G have
probability functions

PZ=9=7.3 1o PG=0)=@/)L 10,

6 — Banach Center t.25
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where the sums are over y isomorphic to z, and z is isomorphic to g. Conditional
entropies satisfy

H(Z|Y=y)=H(Z|G=g)=H(Y|X =x)=H(G|X =x) =0,
H(G|Z = z) = H(G|Y = y) = log§,,
H(X|Y = y) = logy,,
H(X|G = g) < loga,,
H(Y|Z=2)=H(Y|G = g) < logé,,
H(X|Z = z) < log(«,B,),
H(X|Y =y, G = g) < log(e,/5,),
where y and g are isomorphic to z.
Using this lemma, we readily obtain the following theorem.

THEOREM 8. Under multinomial (n, p,, ..., p,) occupancy we have

H(X) = "ii o(), H(Y)=H(X)—Elogy, H(G) = H(Z)+Elog§,
=1

H(Z)< H(Y) < H(X), H(Z) < H(G) < H(X).

It is less evident whether or not a general inequality holds between H(Y)
and H(G). Theorems 9 and 12 below show that H(Y) < H(G) is true for
sufficiently large n if clogc = o(n). In fact, H(X) ~ H(G) and H(Y) ~ H(Z) for
clogc = o(n) and n — .

THEOREM 9. Under multinomial (n, p,, ..., p.) occupancy we have

H(Y)=n Z @(p)—logn!+ i i (Z)p}‘(l—pj)""‘logk!.

k=0 j=1
For Y5-1(1/p) = 0(c?), c* = o(n) and n— o

c—1

H(Y)=—

[
log(2nen)+4 Y logp,;+O(c?/n).
j=1
Proof. According to Lemma 7 and Theorem 8 it follows that

(35)  H(Y)=H(X)—EH(X|Y)=n ): o(p)—logn! + Z ElogY,..
j=1 j=1

Multinomial occupancy implies that ¥, is binomial (n, p;), and the first formula
for H(Y) follows readily. To prove the asymptotic formula we use a refinement
of Stirling’s approximation (cf. Feller, 1957, p. 52) and deduce that H(X|Y) has
upper bound
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¢ c—1 1 < 1
(36) (n+5)logn—j§l(Y,.+£)1og};.——2 log(2n)+m—j=1 127,41
and lower bound
< c—1 1 d 1
(37) (n+§)1ogn—j;(l’1+&)logY,-——2 log(2m) + 1> +1_,-§1 271

provided we define log0 = 0. Therefore

< c —1
(8) HXIY)=nY o(Ym—} Y log(¥/n)———log(2nn)+ O(c*/n).
j=1 i=1

/

Basharin (1959) uses ) ¢(Y,/n) as an estimator of ) ¢(p) and shows that its
bias for finite ¢ and n— o is —(c—1)/2n+ 0(1/n?). This method of proof can
be used to show that

39) E} o(Yyn)= Z @(p)~—(c—1)/2n+0(c?/n?).
j=1 j=t

Furthermore,

(40) Elog(Y/n) = logp;+0(1/n).

Substitution of (38), (39) and (40) into (35) yields the desired result.
COROLLARY 10. For ¢ =2, p,=p, P, =q, and n—
(41) H(Y) = tlog(2nenpq)+ O(1/n).
Remark. The entropy of a normal distribution with probability density
function f(x) is given by Kullback (1959, p. 32) as
@) — | felogf(x)dx = }log(2res?),

where o2 is the variance. Corollary 10 implies that the entropy of a binomial
(n, p) distribution is asymptotically equal to the entropy of a normal
distribution with variance npgq.

THEOREM 11,

HZ)zn Xc: o(p)—logn!—logc! + i i P(Z, = jlog(k!j)
j=1

k=0 J=1
with equality iff p, =... = p. = 1/¢c. For Y.(1/p) = O(c?), ¢ = o(n) and n— o,

H(Z) = ?logn+ O(clogc).
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Proof. According to Lemma 7, it follows that
43) H(Z)= H(Y)—EH(Y|Z) > H(Y)—logc!+ Z ElogZ,!
k=0

= H(Y)—logc!,

which together with H(Y) = H(Z) yields the asymptotic result. The hequality
of Theorem 11 follows from (43) and (35) by noting that

(44) Y ElogY} = Y (EZ))logk!,
Jj=1 k=0
(45) EZ,= } P(Z,2)),
J=1
(46) ElogZ,! = Y, P(Z, > jMlogj.
j=1
THEOREM 12.

¢ ¢ ¢!S(n, k)log(c—k)!
H(G) > njglq;v(pj)—logc'!+k§1 =Rl

with equality iff p, =...=p,= 1/c. For clogc = o(n) and n— oo,

H(G)=n 3} o(p)+o(n).
j=1

Proof. According to Lemma 7, (X|G = g) is uniform iff p, =... = p,
= 1/¢, and it follows that
47) H(G) = H(X)—EH(X|G) 2 H(X)—logc! + ElogZ,!
with equality iff p, =... = p, = 1/c. Substituting Z, = c— K where K has

probability function (3) yields the first part of Theorem 12. The second part
follows from the inequality

(48) n zc: e(p)—logc! S H(GY<n } o(p).
=1 =,

We conclude with a result about the variance of the information I(X|Y).

Recall that according to (27), EI(X|Y)= H(Y), and according to (29),
VI(X|Y) = VH(X|Y).

THEOREM 13. Under multinomial (n, p,, ..., p) occupancy with Z(l/p})
= 0(c?), c*log?’c = o(n) and n— 0, we have

VH(X|Y)=n[} p;log’p,—(Y. o(p))*]+0(c*log*c).
j=1 i=1
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Proof. According to (35), (38) and Theorem 9 we obtain

@ AKD-EAEID =0 3 | o(L)-e0) [+

1 & Y
—= ¥ log—L +0(c¥/n).
21; np;

Now the geometric-arithmetic means inequality together with the assumption
Y.(1/p) = O(c?) imply that

Y,
(50) Z 1og—L O(clogc),
=1 N"p;

and it follows from (49) that

(51) VHX|Y)=nVY w(y)w( 4)+0(czlog c)+0( 31:“).

Ji=1

Here the first term can be handled by the method used by Basharin (1959), and
this leads to the formula in Theorem 13.

It 1s possible to improve this result by expansion of (49) without using (50).
Then after tedious work it is possible to show that the remainder term of order
O(c*log?c) can be replaced by O(c?) where we need to assume ¢ = o(n) only.
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