1. Introduction .......................................................................................................................................................... 5 2. Notation and preliminary remarks............................................................................................................................ 7 3. A geometric approach to the calculus of variations............................................................................................... 9 4. Multisymplectic manifolds and a multiphase structure of a classical field theory........................................... 19 5. A multiphase structure of General Relativity............................................................................................................ 22 6. The Cauchy problem and ADMW coordinates in General Relativity................................................................... 26 7. A symplectic structure in the set of solutions of field equations.......................................................................... 29 8. A symplectic structure in the set of Einstein metrics.............................................................................................. 36 9. The gauge distribution and the action of the diffeomorphism group.................................................................. 39 10. Degrees of freedom and a superphase space -for General Relativity............................................................. 46 11. A pseudo-differential structure in the space ℋ. A Lie algebra of functionals on ℋ....................................... 48 12. A variational principle for General Relativity............................................................................................................ 55 13. The Hamilton-Jacobi equation in lagrangian field theories................................................................................ 57 14. The Hamilton-Jacobi equation in General Relativity............................................................................................. 62 15. Proofs............................................................................................................................................................................. 66 Appendix. Proof of the ellipticity of the operator AA*..................................................................................................... 79 References.......................................................................................................................................................................... 82
[1] R. Abraham, Foundations of Mechanics, Benjamin, New York 1067.
[2] R. Adler, M. Bazin, and M. Schiffer, Introduction to General Relativity, McGraw Hill, New York 1965.
[3] R. Arnowitt, S. Deser, and C. W. Misner, The dynamics of General Relativity, in: L. Witten (Ed.), Gravitation — an introduction to current research, John Wiley, New York 1962.
[4] M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, Journ. Differ. Geometry 3 (1969), pp. 379-392.
[5] I. Białynicki-Birula and Z. Białynicki-Birula, Quantum electrodynamics, PWN-Pergamon Press, Warsaw-Oxford 1976.
[6] D. R. Brill and S. Deser, Instability of closed spaces in General Relativity, Comm. Math. Phys. 32 (1973), pp. 291-304.
[7] Y. Choquet-Bruhat, The Cauchy problem, in: L. Witten (Ed.), Gravitation-an introduction to current research, John Wiley, New York 1962.
[8] Y. Choquet-Bruhat and S. Deser, Stabilité initiale de l'espace de Minkowski, C. R. Acad. Sci. Paris 275 (1975), pp. 1019-1021.
[9] Y. Choquet-Bruhat and E. Geroch, Global aspects of the Cauchy problem in General Relativity, Comm. Math. Phys. 14 (1969), pp. 329-335.
[10] P. Dedecker, Calcul des variations, formes différentielles et champs géodésiques, in: Coll. Intern. Géométrie Diffèrent., Strasbourg 1953.
[11] B. De Witt, Quantum theory of gravity, I. The canonical theory, Phys. Rev. 160 (1967), pp. 1113-1148.
[12] P, A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. (London) A246 (1958), pp. 326-332; see also: The theory of gravitation in Hamiltonian form, ibid. A246 (1958), pp. 333-346.
[13] D. Ebin and J. Marsden, Group of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. 92 (1970), pp. 102-163.
[14] L. Fadeev, Symplectic structure and quantisation of the Einstein gravitation theory, in: Actes du Congres Intern, d. Mathemat. Nice 1970, vol. 3, pp. 35-39.
[15] L. Fadeev and V. Popov, A covariant quantization of the gravitational field (in Russian), Uspechi Fiz. Nauk 111 (1973), pp. 427-450.
[16] A. Fischer, The theory of superspaces, in: M. Carmelli, S. Fiekler, L. Witten (Ed.), Relativity, Plenum Press, New York 1970.
[17] A. Fischer and J. Marsden, The Einstein equations of evolution. A geometric approach, Journal Math. Phys. 13 (1972), pp. 546-568; see also: General Relativity as a Hamiltonian system, in: Symposia Mathematica vol. XIV, published by Istituto Nazionale di Alta Matematica Roma, Academic Press, London-New York 1974.
[18] A. Fischer and J. Marsden, The Einstein evolution equations as a quasilinear first order symmetric hyperbolic system I, Comm. Math. Phys. 28 (1972), pp. 1-38.
[19] A. Fischer and J. Marsden, Linearization stability of the Einstein equations, Bull. Amer. Math. Soc. 79 (1973), pp. 997-1003.
[20] K. Gawędzki, On the geometrization of the canonical formalism in the classical field theory, Reports on Math. Phys. 3 (1972), pp. 307-326.
[21] K. Gawędzki Fourier-like kernels in geometric quantization, Dissert. Mathematicae 128 (1976).
[22] H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier 23 (1973), pp. 203-267.
[23] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge 1973.
[24] J. Kijowski, A finite dimensional canonical formalism in the classical field theory, Comm. Math. Phys. 30 (1973), pp. 99-128.
[25] J. Kijowski, Multiphase spaces and gauge in the calculus of variations, Bull. Acad. Pol. Sci. 22 (1974), pp. 1219-1225.
[26] J. Kijowski and W. Szczyrba, A canonical structure for classical field theories, Comm. Math. Phys. 46 (1976), pp. 183-206, see also: Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory, Proceedings Coll. Intern. Géométrie symplectique et Physique Mathématique, Aix-en-Provence 1974, In: Colloques Internationaux CNRS n° 237 (1975), pp. 347-379.
[27] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. 1, 1963, vol. 2, 1969, Interscience Publ., New York.
[28] B. Kostant, Quantizations and unitary representations, in: Lectures in Modern Analysis and Applications III, ed. C. T. Taam, Lecture Notes in Mathematics 170, Springer-Verlag, Berlin 1970; see also: Symplectic spinors, in: Symposia Mathematica vol. XIV, published by Istituto Nazionale di Alta Matematica Roma, Academic Press, London-New York 1974.
[29] K. Kuchar, A buble-time canonical formalism for geometrodynamics, Journ. Math. Phya. 13 (1972), pp. 768-781.
[30] W. Kundt, Canonical quantization of gauge invariant field theories, Springer tracts in modern physic 40, Springer-Verlag, Berlin-Heidelberg-New York 1966.
[31] S. Lang, Introduction to differentiable manifolds, Interscience, New York-London 1962.
[32] A. Lichnerowicz, Relativistic hydrodynamics and magnetohydrodynamics, Benjamin, New York 1967.
[33] Ch. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco 1973.
[34] R. Narasimhan, Analysis on real and complex manifolds, Masson and Cie, Paris 1968.
[35] J. M. Souriau, Structure des systèmes dynamiques, Dunod, Paris 1969.
[36] S. Sternberg, Lectures on differential geometry, Inc. Englewood N. J., Prentice Hall, 1964.
[37] W. Szczyrba, Lagrangian formalism in the classical field theory, Ann. Pol. Math. 32 (1976), pp. 145-185.
[38] W. M. Tulczyjew, Seminar on phase spaces, Warsaw 1968 (unpublished); see also: Hamiltonian systems, Lagrangian systems and the Legendre transformation, in: Symposia Mathematica vol. XIV, published by Istituto Nazionale di Alta Matematica Roma, Academic Press, London-New York 1974.
[39] W. M. Tulczyjew, Canonical dynamics of relativistic charged particles, Ann. Inst. Poincaré A 15 (1971), pp. 177-187.
[40] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6 (1971), pp. 329-346.
[41] J. A. Wheeler, Geometrodynamics and the issue of the final state, in: B. De Witt, C. De Witt (Ed.) Relativity, Groups and Topology, Gordon and Breach, New York 1964.
[42] K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, New York 1970.