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Introduction

The aim of this paper is to characterize cubes, particularly Euclidean
n-cubes, the Hilbert cube and Tychonoff cubes, as well as Euclidean
n-spheres, as those topological spaces which have subbases with some
prescribed properties. The cubes are characterized by the property of
having the so-called BISC-subbases and some additional properties of
these subbases allow us to distinguish the cases of Euclidean cubes, the
Hilbert cube and Tychonoff cubes. A subbase is called a BISC-subbase
if it possesses the properties (B), (I), (S), (C) (see § 1). One of these prop-
erties, namely the property (8), the so-called supercompactness, was
introduced for the first time by J. de Groot [1], who initiated the study
of this subject. In papers [2] and [3] de Groot and Schnare gave also
a characterization of cubes in terms of snbbases; however, the case of
Tychonoff cubes was not included there.

The second part of this paper deals with a characterization of n-
spheres, where a characterization of n-cubes in terms of BISC-subbases
is applied.

Let us add that topological characterizations of cubes are not known
except the subbase characterization and the well-known characterizations
of closed interval according to Moore and Lennes [4] (for more informa-
tion see Kuratowski [4]). _

For spheres we know only the characterization of the 1-sphére and
the 2-sphere (the last due to Kuratowski [4]).

The situation is different if the space is assumed to be a manifold;
then e.g. a characterization of n-cubes due to Doyle [7] is known.



§ 1. BISC-subbases

Let X be a topological space. Let £ be a subbase of the topology
on X such.that
(B) if Ue?, then X\clUeP;
(I) (inclusion property) if U, V are in P and there exisis a G in 2
such that
celUncl@ =clVNnel@ =0,

then UcV or VcU;

(8) (supercompaciness property) if # < Z and |J # = X, then there
exist U and V in & such that TUV = X;

(C) (closure separation property) if @ and y are in X and @ # y, then
there exists a U in & such that v¢ U and y¢clU. _

The subbases satisfying the above conditions will be called BISC-
subbases.

The properties (C) and (S) imply that X is Hausdorff and compact.
In virtue of property (B) it suffices to consider only BISC-subbases which
congist of regularly open sets and are such that @ and X do not belong
to 2.

11. If <P and () {clW: WeR} =0, then there exist U and
V in ® such that clUnclV =@.

Proof. The above follows immediately by properties (B) and (S) for 2.

12. If Ue? and x¢ clU, then there ewists a V in P such that eV
and clUnNclV =@.

Proof. If y e ¢c1U then, by (C), there exists a W in & such that 2e¢ W
and y ¢ olW. Let £ be the family of all such W. Then c1 TN {clW: We &}
=@. By 1.1, there exist two elements, say V and V', in #U{U} such
that clVnel V' = @. Since oc (M) {lW: WeR}, V or V', say V', is U,
and the other V belongs to #. Clearly, » belongs to V, the required set
in Z for U

13. If UeZ and we U, then there exists a V in P such that TUV = X
and zdclV.

Proof. If y¢ U (such a y exists since X ¢ &), then, by (C), there exists.
a 1 in 2 such that ye W and o¢ clW. Let £ be the family of all such TV,
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Then UU%=X. By (8), there exist two elements, say V and V', in U U}
puch that VUV’ = X. Since ¢ J # and U # X, V or V', say V',is U,
and the other, V, belongs to 2. Clearly z¢clV and V is the 1eqmrad
set in # for U and 2.

1.4. If Ue P and < U, then there exists a V in P such that ze V < clV
cU.

Proof. Since U ## X, there exists a  in X such that y¢ U. By 1.3,
there exists a G in & such tha,t zd clG and UU@ = X. By 1.2, there exists
a Vin 2 such that e V and ¢l VNel@ = @. Thus, since U V and @
are regulary open, we get xeV c clV < cl(X\cl@) = X\@ < T.

1.5. If Ue P and ¢ cl U, then there exisis a V in P such that lU = V
and zd clV.

Proof. Since x¢ cl U, by 1.2, there exists a @ in £ such that @
and clTncl@ = 0. By 1.3, there exists a V in & such that x¢ clV and
Yu@ = X. Thus, z¢clV and ¢lU <« X\clG =« I\Gc V.

16. If Uand Varein 2, Uc Vand U # V, thenclU < V.

Proof. Suppose, on the contrary, that (1) ¢l U ¢ V. Since all members
in 2 are regularly open, V\clU # @. Let (2) we V\clU. By 1.4, there
exists a @ in 2 such that (3) 2e¢ @ and (4) cl@ = V. Let y¢cl V. By 1.5,
there exists a W in & such that (5) y¢ clW and (6) clV =« W. By (B),
XN\clVe#?. From the fact that U< V¥, (4) and (6) it follows that
cl@nel(X\clW) = el Uncl(X\clW) =0@. By (I), § = U or U = @. But
from (2) and (3) it follows that G ¢ U, and from (1) and (4) it follows
that U ¢ @; a contradiction.

1.7. If U, V are in 2 and clU < V, then there exists a G in & such
that clUcGccl@c V.

Proof. Let z¢ cl U. By 1.2, there exists a @& in & such that o< @ and
elUnel@ =@. Let # be the family of all such G. Then VUl £ = X,
By (8), there exists a @ in # such that VU@ = X, In virtue of (B),
XN\cl@ ¢ 2. Thus clU c X\cl@ = el(X\clG') = NG’ <= V.

§ 2. The families D(U) and €(U) and the spaces Xy
for a given U
For U belonging to £ let
D(U) ={Ve?: Ve Uor X\clUc Vor VeX\clUor Uc V3.
Let us begin from some simple properties of operation D.
2.1. If U2 then D(U) = D(X\eclU).
2.2. If VeD(U) then X\clVe D(U).
2.3. If U and V are in & and UNV =@ then D(U) =-D(V).
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Proof. (Only the proof of 2,3 is needed.) Let Ge D(U). If @<= U
then @ = (X\ecl V), Hence Ge D(V). If U c @, then there exists an H
in # and we U such that xze H and clH < U. Hence clVNnelH =@
=clHNn({X\GQ) = clHncl(X\cl@). Since V, H and X\clG@ Dbelong
tee?; by (I), V < X\cl@ or I\cl@ < V. Hence X\clGe D(V), and,
by 2.2, Ge D(V). If X\clU = G, then X\clG =« U. Hence, V = G. If
G < X\clU, then U < X\cl@. By 1.4, there exists an H in £ such that
¢clH c U. Hence clVnclH =@ = cl@neclH. Hence, by (I), Ge D(V).
Thus we have D(U) « D(V) in all possible cases. By symmetry D(V)
c D(U).

24. If U, Ve? and U < V then D(U) = D(V).

Proof. Since Uc V, we have Un(X\clV) =@. By 2.3, D(U)=
D(XN\eclV) and, by 2.1, D(X\clV) =D(V); D(U) =D(V).

2.5. If Ue? and UeD(V) then D(U) = D(V). <

2.6. If U and V are in & then D(U) = D(V) or D(U)ND(V) = A.

Proof. Let D(U)ND(V) #@. Then there exists a @ in & such thaf
@eD(U)ND(V). By 2.5, D(G) = D(U) and D(@) = D(V). Hence D(U)
= D(V).

In virtue of 2.6 we have a partition of #: U and V are in the same
element of the partition iff D(U)= D(V). Then, by the Axiom of Choice,
there exists a set & ¢ # which has exactly one clement in each element
of the partition.

The cardinality of & is called the incomparability number of 2.

If Ues then let C(U) ={VeD(U):V<Uor Uc ¥V} Let Xy
= C(U)u{0}u{l}, where 0 and 1 are elements which do not belong to
c(0).

Let us generate in X a topology by the sets

[0, V) = {0}U{Ge O(T): G < V},
(W,1] = {@e C(T): W < G}ufl},

where W and V run over C(U).
27. If V and W are in C(U), then V< W or We V.

Proof. To prove this, we consider two cases. (The remaining two
are trivial.)

1. Let U< V and U =« W. By 1.4, there exists an H in & such that
clH = U. Hence clHncl(X\clV)=clHNcl(X\clW) =@. Hence, by
(I), Ve Wor WecV.

2. Let V< Uand W< U. By 1.2, there exists an H in & such that
clHnelU =@. Then clVNclH =clWnelH =@ and, by (I), we get
VeWor We V.



2. Tho families D(T) and C(U) and the spaces Xy for a given U 9

28. If UeC(V), Ge 2 and U = @ then Ge C(F).

Proof. We shall show that @ = ¥ or V < G. Since Ue O(V) =« D(V),
we have by 2.5, D(U) = D(V).

Let V < U. Since Ge D(V), we have (by the definition of D(V))
GcVor Ve@or XN\celVec@or Gec X\clV. In the first two cases
we get Ge C(V) immediately. The remaining cases are impossible.

Let G < XN\clV. Then V « X\cl@. Hence X\eclGe (V). By 2.7,
Uc X\cl@ or X\clGc U. Since G U, we have G < X\cl@ or
Gu(X\cl@) c U; a contradiction.

Let X\clV = @G. Then X\cl@ « V. Hence, X\clGe C(V). By 2.7,
U c X\cl@ or X\cl@ < U; a contradiction as before.

210. If V, We %, V =W, Ue D(V) and He D(W) then clUnclH
#@.

Proof. The proof is obvious by 2.3.

211. If U, HeC(V) for some V in &, then clUnclH =0 and
(X\U)n(X\H) #0@.

Proof. The proof is obvious by 2.7.

2.12. The spaces Xy are linearly ordered, having the first and the last
elements.

Proof. We define an ordering in X; as follows:

Let wand y bein Xy, and let 2 #2y. If 2 =0, thenz < y. If y = 1,
thenz<y. If 0 o % 1and 0 #£y 3 1, then x and 4 are in C(U). Then
let z =V and y = W. We say that s <y iff clV =« W.

By 2.7 and 1.6, the relation < is a linear ordering of X;. 0 and 1
are the first and the last elements, respectively. Clearly, [0, V) = {ze Uyp:
<V} and (W,1] = {ye Xy: W<y}, so the topology of Xy is the
order topology induced by the ordering defined above.

§3. A lemma on chains in maximal BISC-subbases
of continua

Since the properties which appear in the definition of BISC-subbases
depend on finite subfamilies of the BISC-subbase £, by the Kuratowski —
Zorn Lemma each BISC-subbase is contained in a maximal one.

Let X be a continuum and let # be a maximal BISC-subbase for the
topology on X. Let G be a fixed member of Z. Let R(@) be the family
of all U in £ such that UnG = @. We shall prove in this section a lemma
on chains in R(G).

Before proving the lemma, let us note some preliminary facts.

3.1. If L is a chain contained in 2 and suoh that ) {clU: Ue L}nelV
=@ and clJ LnclV £, then |J L =2X\clV.
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Proof. The inclusion | L < X\clV is obvious.

To prove that I\elV < [J L let us assume that there exists an
« in X\cl ¥V such that z¢ ) L. By 1.4, there exists an H in & such that
zeH c clH < X\clV. Hence clHNclV =clUnelV =0 for each U
in L. Hence, by (I) and 1.6, el U =« H. From this it follows that cl{ ) L c
clH; a contradiction,

3.2. If L is a chain contained in RB(Q), then 2V{{_ L} has property 1.1.

Proof. Let cllJ LnelV N ... NnelVy, =@ where Ve # for ¢ =1, ...
.oy k. Since ¢l U < cl{J L for each Ue L and L is a chain, by 1.1 for &
there exists a V,in {V,,..., V;} such that el Uncl V; = @ for each U in L.
Olearly, we may assume that V; ¢V, forl + j. Hence ) {clU: Ue L}Nncl ¥V,
=@ . Ifell J LNelV; # @, then, by 3.1 | L = X\cl V. Hence cl(X\cl V;)
NelV; =@ for some j +# . Clearly, we may assume that clV,n... nel 7y
#@. Thus V; < V, for ¢ + j; a contradiction.

3.3. If w¢ cllJ L, then there exists a V in P such that z¢ V and
cdJ LnelV =@.

Proof. By (C), there exist V,, ..., Vi in £ such that e VN ... NV,
and cll ) LnelV,n... nclV, = @. By 3.2, thee exists a V; such that
ze V, and cllJ LnclV =4a.

3.4. If mdclJ L, then there exisis a V in & such that cl|J L=V
‘and og¢clV.

Proof. The proof is obvious by 3.3 and (B) for £.

. 35. If Ve® and A L < V, then there ewists an H in & such that
el UHc HcclH V.

Proof. By 3.3, for each z¢ cl( ) L there exists a W in & such that
ze W and ellJ ZneclW = @. Let # be the family of such sets W in 2.
Hence | 2UV = X. By (8), there exists a W' in # such that W' uV = X.
By (B) and the definition of family 2, we get X\clW'e £ and elW'nellJ L
=@. Hence cllJ Lc X\clW cel(X\clW)=X\W V.

3.6. If L is a chain contained in R(Q), then 2U{J L} has the prop-
erty (S).

Proof. Let X =(J Lud,u UG, and GHU ... UG, # X. Since
Gie?,i=1,..,k and I c 2, by (8) there exists a @; and. there exists
a UeL such that UUG; = X. But U< {J L, and hence U Lu@; = X.

3.7. If L is a chain contained in R(G), then PU{J L} has property (T).

Proof. Let H, H'¢# and clHncll J L = clH' nel H = @. For each
U in I there is ¢lU <= ¢l J L. Hence clHNelU =@ =clHNclH’, for
each U in L. From (I)it follows that U <« H' or H' = U for Ue L.

If for each UelL there is U < H', then |J L < H’. If there exists
an U in L such that H' < U, then H' = U-L
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Let Hy, H'e# and clHndlJ L = clH'nellJ L = 0. If Ue L, then
clU ccll JL. Hence clHNelU =clH'NnclTU =@. From (I) it follows
that H <« H' or H' <« H.

3.8. If L is a chain contained in R(Q), then | L is vegularly open.

Proof. The proof consists in showing that Intell J L=\ L; U L
being open.

Let e Intell J L. Since 2 is a subbase in a compact space, hence
there exist @, ..., @ such that

we@N...NG, and clGn... Nnel@, < IntelY L.

We shall assume that one of G4, 7 =1,..., k, is such that cll J L = G;.
By 1.4, there exists an A in & such that cl4 < G. Hence we may assume
that X\cl4 is one of @&; and we have cll J L = X\clA4. Since X is con-
nected, we have cll ) L ¢ G; for some =1, ...,%.

Let Gy,y...,G;, 1<j<k, be all those @; such that ellJ L < G,.
By 2.7, those G, form a chain, say @y = ... = @;. By 3.5, there exists an
H in #?such that cll JL < H c ¢lH < @,. From X\clHe¢Z and el J In
nel(XN\clH) =0 we get clGyn ... nelG;n ... nelGN(XIN\NH) =0. By
1.1, there exists a @3, | =1, ...,k such that cl@;Nn(X\H) = @. Since
el N(X\H) # 0, we have cllJ L ¢ G,.

If UeL, then elU c el L and cl Un(X\H) = cln(X\H) = @4.
By (I), for each U in I, there is U = G, or G, = U.

If G, U, for some U from L, then 2¢e@; < U = | L. Hence we
get the following implication: if ze Intcll J I, then z¢ {J L. Now, sup-
pose that for each Ue L there is a U < @;. Hence | L c ;. By 3.4,
for y¢ clJ L, there exists a W in £ such that y¢clW and ol J Lc W.
Let # be the family of all such sets W. Hence () £ = cl| L. For each
set in ZU{G;} we have 4A¢C(U) for some UeL and 4AeZ2U{G;}. By 2.7,
we have H « W or W < H for each H, W in ZU{&}.

If W@, for some W in £, then cllJ L < @;. But this is impos-
sible, because cllU) L ¢ G;.

Hence, for each W in 4%, G; < W. Hence, G; = (| £ = ¢l_J L. But
@, is regularly open; hence Intcll J L = Intel@, = G; and Gy = IntclG,
< IntelJ L, ie., @ = IntcllJ L. By 1.4, there exists a ¥ in £ such
that 2¢ V < elV = G4. By 1.4, there exists a 7 in # such that clT < G.
Since ¢l J ZN@ =@ and el V < cl(JL, for each U in L we have clUnclT
=clVnelT =@. By (I) we have Uc V or V < U, for edch U in L.

If for each U in L we have U c V, then | J L = V. Hence IntcllJ L
< IntelV = V and consequently & = V. But ¢l¥V < @, and hence &
= ¢cl@;; a contradiction.

Hence it is proved that there exists a U in L such that ¥V < U. But
geVand V ¢ U c |J I, and hence ze | L. We get the required inclusion
IntellJ L = U L, # being an arbitrary point of Intell) L.
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LeMMA. If L is « chain contained in R(G), then ) Le R(G).

Proof. By 3.4, for each ¢ cl ) L there exists a 7, such that ¢ V,
and cl¥.nel U L =9. Let L' be the family of all such V,. Since I is
a chain, by (I) L’ is a chain and X\cl |J L = |J L'« R(U) for each
UeL. Hence 2uU{lJ L,|J L'} has property (B).

From the facts proved above we have (J L and {J L'« 2. Since
for each UeL, UnG =0, we have (J LnG =&. Hence |J Le R(@).

§ 4. Further properties of the spaces Xy

As Dbefore, let X De continuum, # a maximal BISC-subbase and &
a subfamily of & defined in § 2. We consider for a-given U in & the sub-
families C(U), Xy = {0}uC(U)U{1}, with the order topology introduced
there.

We shall show that X, are Hausdorff and compact and that each
element from C(U) separates X. This will be done by proving some
lemmas.

4.1, If VeC(U), then [0, V)NV ,1] =4.

Proof. Suppose that there exists a G'e C(U) such that Ge [0, V)N
N(V,1]. By the definition of sets [0, V) and (V, 1] we get cl V < @G and
cl@ = V. Hence clV = V is closed-open. But Ve #, and hence clV is
different from X; a contradiction.

4.2. If VeC(U), then X N\{V} = [0, V)U(V, 1]

Proof. Since V¢ [0, V)U(V, 1], we have [0, V)U(V,1] =« X, \{V}.
Let GeC(U) and @ # V. In virtue of 2.7, clG =V or elV =@ If
clG = V, then Ge[0,V). If clV =« @, then Ge(V,1]. Thus Xy\{V}
c [0, YU(V, 1]

4.3. If VeC(U), then {V} disconnecls Xy.

4.4.- The spaces Xy, Ue, are Hausdorff.

Proof. Let z and ¥ be in X;; and let z # y.

If 2 =0 and ¥y =1, then 0¢[0, U), 1¢(U, 1] and by 4.2, [0, U)n
n(U,1] =0.

If 4 =0 and y = Ve C(U), then there exists a @G in £ such that
cl@ = V. Hence Ve(G,1], 0¢[0,G) and, by 4.1, [0,GNn(G,1] =6.

If 4 = VeC(U) and ¥y = 1, then there exists a G in £ such that
clV=G. Hence Ve[0,@G), 1¢(G,1] and by 4.1, we get [0,G)N(G,1]=0.

If z =V,y =W and V, We(O(U), then, by 2.7, clV =« W or clW
c V. Suppose that elV « W. By 1.7, there exists a @ in £ such that
clV =« @cclG@c W. In virtue of 2.8, we have Ge C(U) and Ve [0,d)
and We(G,1]. By 4.1, we get [0, @)N(G,1] =@.
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4.5 The spaces Xy, Ue7, are compact.

Proof. Let Ue& and let J be an open covering of X5. By the
Alexander Lemma we can assume that the elements are in a subbase
consisting of [0, W) and (V, 1]for W and V running over ¢(T7). Decompose
J into two disjoints parts:

T, ={WeT: W =[0,4) where -GeC(T)},
T, = {WT: W =(G,1]  where Ge C(U)},

Let L, = {G<C(U): [0,@)eT,}. By 2.7, L, is a chain in £. Consider
two cases.

1. There exists an H in £ such that for each @ in L, we have HN@
=@.
In virtue of the Lemma, we have {J L,e#. By 2.8, | L, 0(U).
Since U L;¢ \J{[0,G): GeL,} and 7 is a covering of Xy;, there exists
a W' in T, such that (J L, « W'. Let W' = (@, 1). From the definition
of (&, 1], it follows that cl@ < (U L,. But X is compact and I, is a chain;
hence there exists an V¥V in L, such that cl@ < V.

We shall show that [0, V)U(G', 1] = X. Suppose that there exists
a D in C(U) such that D¢ [0, V) and D¢ (G, 1]. Since D¢ [0, V), we have
clDg¢ V. But De C(U), and hence, by 2.7, D =« Vor V « D. Since D¢ (G/, 1),
.we have cl@ ¢ D. But De C(U), and hence, by 2.7, Dc @ or @' < D.
Since D # G and D # V, we have clD c @ and clV <« D and conse-
quently D = el D is closed-open. But clD is different from X as a member
of 2; a contradiction in virtue of the connectedness of X.

2. For each H in # there exists a @ in L, such that Hn@ 5+ . Since
1¢ U {W: WeT,} and 7 is a covering of X;;, we infer that there exists
a WeT,=Z such that 1eTV.

Let W = (F,1]. We shall show that ¢lF < (J L,. Suppose that
clF¢&J L,. Then by 2.7, for each G in L, we have & = F. Hence | J L, c F.
Since X\clFe 2, for G in L, we get (X\elF)n@ =3; a contradiction.

Thus clF = | L, and we infer that there exists a G' in I, such that
clF < @ (X being 2 compact space and L, being a chain). Hence [0, G')U
U(F, 1] = XU'

Note. In fact, it has been shown that X, are supercompact.

4.6.If Ue 2, then there exists a V e such that Ue C(V)or X\clUe O(V).

Proof. Let UeZ. Then there exists a V in & such that Ue D(V),
Since Ue D(V), wehave Uc Vor Ve UorX\ectV e Uor U c X\clV.
In the first two cases Ue C(V) obviously. In the last two cases we get
X\clUe C(V), since the members of £ are regularly open.

4.7. The spaces Xy, Ue, are linearly ordered Hausdorff compacia
with the first and the last elements.
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Proof. This is obvious by 2.2, 2.12, 4.4 and 4.5.

4.8. If U and V belong to O(@), Ge & and we V\cl U, then there emisis
a WeC(F) such that ze FrW.

Proof. Since U, Ve C(G), wehave, by 2.7, U= V or ¥V = U. Since
P\elU # 9, we have, by 1.6, clU < V.

Let # be a maximal family of elemets of 2 such that for each W in
R, x¢TWand Uc W.Since UeC0(@) and Uc W for WeR = &, we
have, by 2.8, WeC(@) for We#. Then, by 2.7, WcV or Ve W
for each We#. But ze V and x¢ W, and hence, by 1.6, clW < ¥ for
We%. By 2.7, # is a chain and Wn(X\clV) =0 for We £. Then, by the
Lemma and 2.8 we have W = {J #¢ C(@), and z¢ W. By the maximality
of # and by (B), we get mecllV.

§ 5. The Main Lemma

Let X,2,% <« 2, and Xy for Ue & be as before.

MAIN LEMMA. Let Y be the produet of Xy, and let ny,: Y —X, be the
projection, where Ve . Then Y is homeomorphic to X.

Proof. Let ye Y. Decompose & into three parts, setting

Fo(y) ={VeF: mp(y) = 0},
F1(y) ={VeF: mp(y) =1},
Z3(y) ={Ve&: mp(y)e O(V)},

Clearly, these parts are disjoint.

If VeSo(y), then let Top(y) = () {clU: el U = V}.

If Ve#,(y), then let Ty (y) = () {X\U: clV = U}.

I Ve Pa(y), then let T,p(y) = clUN(X\U) = FrU, where zp(y)
= T.

Let

Hy =N {Tor(y): VeFo()}n N {Tap(y): VeF1(y)}D
NN {Tap(y): VeFs(y)}.

By 2,10, 2.11 and 1.1, H, is non-empty. We shall prove that H, is
2 one-point set.

Let us assume, on the contrary, that there exist two different points
w and z in H,. By (0), there exists a & in £ such that we G and 2¢ cl@.
By 4.6, there exists a V in & such that Ge O(V) or X\cl@Ge C(V). By
symmetry, we can assume that G'e C(V). Then we consider ny(y). There
are three possible cases.

Let mp(y) = 0. Since Ge O(V), we have G V or ¥V c G By 1.4,
there exists a W in £ such that clW < @ and ¢lW < V. Then, by the
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definition of O(V), We O(V). But clW < @ and 2¢ cl@, and hence z ¢clW.
But Typ(y) = clW, and hence z¢ Ty, (). But H, < Ty, (y), and hence
z¢ H,; a contradiction.

Let np(y) = 1. In this case we get a contradiction as before if we
pass to complements.

Let 7y (y) = Ue C(V). Since w,2¢ H, =« Fr U, we have @ & U and
Ud G But U,GeC(V), and hence, by 2.7, U< @ or G = U; a contra-
diction.

Define h: ¥—X, letting h(y) be the single point in H, for ye Y.
We shall prove that h is a homeomorphism.

To prove that % is one-to-one, let us assume that there exist two dif-
ferent points w and 2 in ¥ such that i(w) = h(2), i.e.,, that H, = H,.
Since w,ze ¥ and w # 2, there exists a V in & such that n, (w) # ny(2).

Let =y (w) = 0 and 7, (2) = 1. By 1.4 and 1.5, there exist @, U in
Zsuch that cl@ =« VandelV <« U. Hence clGN(X\TU) =@. But H,, c cl@
and H, c X\U. Hence H,NnH, =@ and therefore h(w) # k().

Let znp(w) =0 and =p(2) = Ue C(V). Since UeC(V), we have
Uc Vor Ve U. Then, by 1.4, there exists a @ in & such that clG < V
and cl@ = U. Hence, Ge O(V) and FrUnecl@ =@. But H, < cl@ and
H,c FrU. Hence H,nH, =@, ie., h(w) # h(2).

The case where z,(w) = Ue C(V) and ny(2) = 1 is dual to the pre-
ceding one.

Let ny(w) = U and mp(2) =& and U, Ge (V). Then, by 1.6 and
2.7, elU= @ or el@ = U. Hence FrUn¥r @ =@. But H, < Fr U and
H, c FrG. Hence H,NH, =0, ie., hiw) # h(2).

To prove that h is onto, let we X. We define a y in ¥, defining its
coordinates y, for each Ve & as follows. Let Ve &. If for each U in O(V)
we have x¢ U, then we set yp = 1.

If for each U in C(V) we have ¢ U,.then we set y, = 0.

If there exist U and @ in O(V) such that ze G\cl U, then by 4.8,
there exists a W in O(V) such that v« FrW. Then we set y, = .

It is obvious that we H, and therefore i(y) = 2.

To prove the continuity of & let Ue%. There are two cases.

There exists 2 ¥ in & such that Ue O(V). We shall prove that 2~ (T)
= a3'([0, U)). To check this let ye2~'(U). Hence h(y)¢ X\T, ie,
H,N(X\T) =0. Since X\clUeZ and each element of the families whose
interseetion is H, belongs to 2, by (B) there exists a W such that elWn
N(X\T) =@, ie, clW < U. By 2.9, WeC(V). If z=p(y) is different
from 0 and 1, then ny(y) = W. Hence =y (y¥)e [0, U). If ny(y) = 1, then
T.7(y) « I\T, ie., T,y (y)nU =0. Hence, H,NU =0, i.e., h(y)d U;
a contradiction. If @y (y) = 0, then ye=5*([0, U)) obviously. Thus the
inclusion A~'(0U) < =7 ([0, U) ) is proved. Let #e n,,l([o U)). Then
ay(4)e [0, U). If np(y) # 0, then =y (y) = @ for some & in C(V). Hence
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ol@ c U. But H, < cl@. Hence h(y)e U. If 7, (y) = 0, then, by 1.4, there
exists a @ in £ such that el@ = U. But H, c T,y (y) c ¢l@. Hence h(y)e U.

There exists a V in % such that X\cl Ue C(V). Then we shall prove
that h~'(U) = n3'((X\el U, 1]), a8 in the preceding case, if we pass to
the complements.

Thus the continuity of & is proved.
But Y, by 4.4 and 4.5, is compact and Hausdorff, X is Hausdorff,

h is continuous, onto and one-to-one, and hence A is a homeomorphism.

§ 6. Application to the characterization of several cubes

An immediate corollary of the Main Lemma is the following

TuroREM 1. A Hausdorff continuum X is a product of linearly ordered
continua iff there exists a BISC-subbase for its topology.

Proof. By the Main Lemma, X is topologically a product of X,
for Ve . Since X is connected, X, are connected. By 4.7, X are linearly

ordered Hausdorff continua.
On the other hand, the linearly ordered continuum C has a subbase

consisting of the “hali-lines” 0} = {z¢C: s < y}and C, = (¢ C: z >y},
where  runs over C. Olearly, this is a BISC-subbase. The product of such
C’s has also a BISC-subbase, namely that which consists of counter-
images under the projections of the “half-lines” on the axes.

In the next characterizations the proof of only one implication is
needed.

THEOREM 2. 4 melrizable continuum X 1is topologically a Hilbert cube
iff there exists a BISC-subbase for its topology and cards > R,.

Proof. By Theorem 1, X is a topological product of linearly ordered

continua X, Ve & and cards? > R,.
Since X is metrizable, X, are metrizable. By Theorem 1 of Kura-

towski’s book [4], p. 187, X, are closed segments.

THEOREM 3. A melrizable continuum X is a Fuclidean n-cube iff there
exists a BISC-subbase for its topology and card¥ = n.

Dyadic spaces have a topological characterization given by Alexandroff
and Ponomarev in [6].

TreorEM 4. X 18 a Tychonoff cube iff it is a dyadic continuum and if
there exists a BISC-subbase for its topology.

Proof. By Theorem 1, X is a product of linearly ordered continua
Xp, Ve Hence X, are dyadic. By a theorem .of Mardedié and Pa-
pié, [5], X, are topologically closed segments. Thus X is a Tychonoff
cube.
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Remark 1. Let 2 be a BISC-subbase in the continuum X and let
¥ < 2 be such as & for & in § 2. Then the set

B=U{N{clU: UeC(V)}: Ves)

is a boundary of the cube X.

§ 7. Topological characterization of n-spheres

In this section we shall give a topological characterization of n-spheres
in terms of subbases.

A family # of subsets of a topological space X is said to be n-binary
provided for each subfamily #' of # which consists of at most n elements
such that () {clUs Ue R’} =0 there exist two elements in #', say
U, V, such that clUneclV =@.

A family # of subsets of a topological space X is said to be binary
if it is n-binary for n =1,2,...

THEOREM 6. Let X be a metrizable continuum and let n > 2. Let & be
a subbase of the topology on X such thai:

(B) if Ue P, then X\clUe Z;

(I) ¢f V, U arein 2 and there exists a G in # suchthat cl UNel@ = el VN
NnelG =0, then U=V or Ve U;

(S'a) & is 2n —1-binary and 1s not 2n-binary;

(8D) if {Viyeery Vau} « @ are such that elV;n ... nelVg, =@ and
clVinelVy; 0 for each 4,je{l,...,2n}, then clGin... NclG,, =0
for each {G,..., @y} = @ such that V,c @y, ..., Vg, © Ggp;

(8¢) if Viyeooy Vi are in @ and k >2n and clV,n... NclV, =0
then there ewist Vi, V; such that Vic Vy or Vi< Vy, 1 #4;

(C") if e Ve P, then there exisis a U in P such that ze U = clU = V.

Then the space X is homeomorphic to the n —1-sphere.

Note. The conditions (C’) and (S’) for spheres correspond to conditions
(C) and (S) for cubes. In virtue of property (B) it suffices only to consider
subbagses which consist of regularly open sets such that @ and X do not
belong to 2.

Proof. The proof begins by showing some properties of subbases
satisfying the above conditions. Analogously to the properties of BISO-
subbases from the beginning of §1, we have

7.1. If w and y are in X and @ # Yy, then there exists @ U in & such
that xe U and ydclU.

2. If Uand Varein 2, V<= U V # U, then 1V c U.

2 — Disgertationes Mathematicae CXOT
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73.IfclU = V, U, Ve then there exists a G in & such that 1U = G
ccelGe V. .

Let Ve . Let L(V) be a maximal family of sets @ from 2 such that
VeGor GV,

In the sequel the role of L(V)’s will be analogous to that of D(V)'s
for cubes.

7.4. The family L(V) is a chain.

Proof. Let U, WeL(V). Then V= Uor Uc V, and Wc V or
Ve W.If V< Uand Ve W, then by (C'), there exists an 2 in 7 and
a @ in 2 such that 2eG < clG@ = V. By (B) and the assumption that
elements of & are regularly open, cl(X\clU) = X\U and cl(X\clW)
= X\W and X\clU, X\clWe#. Hence clGN(X\U) = cl@n(X\W)
=@ and, by (I), X\el U< X\clW or X\clWc X\clU, ie., clUceclW
or clWcelU. Hence Uc W or We U.

1f V =« Uand W < V, then clearly W < U, and analogously if U= ¥V
and Vc W, then U= W.

It U< Vand W c V, then, by (B) and (C’), there exists an #in X\clV
and a @ in & such that ¢ @ < clG = X\clV. Hence cl@nclU = clGn
NelW =@. Hence, by (I) Uc W or W U.

1.5. If Ue L(V), then L(U) = L(V).

Proof. The proof is similar to that of 2.5.

From (S'a) it follows that there exist U,,..., Us, in £ such that
clUyn... NnelUy, =@ and clU;nelU; # O for each i, j.

Let us consider the chains L; = L(U;).

7.6. The chains L, are pairwise disjointand \ ) {L;: 1 =1, ..., 2n} = &.

Proof. Let ¢ # j. Suppose that there exists a ¥V in # suech that
Ve L;nL;. Hence, by 7.5, L(V) = L; and L(V) = L;. Hence U; = U;
or U;c U; < U; and, by (S8'a), there exist two sets in the family
(U, ..., U,,} which have an empty intersection of their closures; a contra-
diction.

Let Ve2. Since clVnelUyn ... nelU,, =@, by (8'c) there exists
a U; such that V < U, or U;c V. Hence Ve L;.

In virtue of (B), X\clU,e 2. Since X\clU,¢ L;, by 7.6 there exists
a chain I, with j # 4 such that X\e¢l U;e ;. The chain L; will be called
the opposite chain for L;, and will be denoted by L;. In the family
{Uys ...y Upy} let the sets U,,; be such that L, ; is the opposite chain
for L, ie., L, . = L;.

For any j let K; =M {clV: VeL;} and K; = {clV: Ve L}

7.7. For each V ¢ 2 we have clVNK; = cl(VNK;). The same kolds for K.

Proof. If VnK,; =@, then Ve L;.. Hence clVNK;, =@, in virtue
of 7.2.
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Suppose that VNK; # 0 and let x¢ VNEK;. Hence, by (C'), there
exists a U in & such that ze U < cl U = V. Suppose that there exists
a yecl VNK,; such that y¢ecl(VNK;). Since X is a Hausdorff compact
space, there exist sets &,,...,Gin#suchthatye GNn ... "G and x4 clG, N
N ... nel@. By (C') we can ‘assume that cl@n ... nelGNVNnEK; =0,
the sets G; being incomparable by inclusion, in virtue of (S8’c). Since
clU < T, we have cl@;Nn... nelGnelUNK; =0@. Since X is compact
and Iy is a chain, there exists an H in L; such that elG,n ... NnelGnel UN
NneclH =3. None of the sets G,,...,G, U belongs to L;. Hence, by
(S’a), there exists a @, such that clG,NclU = A. Since yeclV and ye< Gy,
we have I'NG, £ @. Let ze VNG,. By (C'), there exists a TV in # such
that ze W e clW e V. We have We L(V) and Ue L(V). Hence, by 7.4,
W < Uor U< W. Since ¢l Unel@, =@, we have U — W. Since 1V = V,
we have cl@,n... nelGnclWnelH = @. Henee, by (Sa), there exists
a @,, G, # G, such that clG,nelV =@. Since U = W, we have ¢l@,N
NnelU=clUnecl@, =3 and, by (I), G, < G, or G, = G;; a contradiction.

7.8. The spaces K; and K; are continua.

Proof. Of course, K;, as a closed subset of a compact space X, is
compact.

Suppose, on the contrary, that K is a union of two disjoint non-empty
and open (in K;) sets 4, B. Since K; is compact and £ is a subbase, we
have 4 = (4,v... VA,)nK;, B = (B;V ... UB)NK,, where 4,, B,
are finite intersections of elements of 2. We can assume that those elements
which appear in A4, (respectively B,) are incomparable by inclusion and
do not belong to L;UL;. This implies that the number of such elements.
in each 4, (respectively B,) is not greater that 2n—2.

Let us consider 4, = G1N... NG, where G;¢ 2. By (C’), we can assume
that cl@G,N ... nclG,NK; < A (this same for B,). Since ANB =@, by
(S’a) and the above assumption 4,NB, = @.

The connectedness of X implies that there exists an » which does
not belong to 4,v ... VA,UB,U ... B,. For given A, and B,, 4, and B,
being intersections of some elements of &, take those elements to which z
does not belong. Let H,, ..., H; be those elements. Of course K; =« H,;U
U ... UH,. Since K; is the intersection of closures of elements of the chain
L; and X is compact, there exists a W in I; such that cIWn(X\H,)n
N ... N(X\H,) = @; the property (S’c) allows as to reduce the number
of sets clW, X\ H,, ..., X\ H, to 2. Hence we can assume that s < 2n —1.
Since H;¢ I,VL;,i =1, ..., 8, we have X\clH,;¢ L;UL,;. Hence s < 2n—2
and therefore, in virtue of (S'a) and the fact that z< (X\H,) for each 1,
we have clWN(X\H;) =0 for some i. Hence H;e L;; a contradiction.

7.9. The subbases ?|K; and 2| E; are BISC-subbases in K; and Ky,
respectively, and the incomparability number of these subbases ts n—1.
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Proof. If @ is a regular open clement of &, then

= Intcl@nK,; = GnEK;

(the equalities follow from 7.7 and the fact that & is regularly open).
This means that GnK; is regnlarly open in I;.

(C) Follows immediately from (C’).

(I) Let @, H and V be in #Z and cl(VnK,)necl(HNK;) = cl(VnEK,)N
nel(GnKy) =@. By 7.7, elVNelENK; = clVNneclGNnK; =@. Since X
is compact and I; is a chain, there exists a U in IL; such that clVn
nelHnelU =clVnelGnel U =@. But 2 > 2 and therefore, in virtue of
(S'a), elVNelH =clVnel® =0. Hence, @< H or H < G.

(B) Let @ be an element of #|K;. Then G = G'nK;, where G2,
Then K,\clg,& = E\clg (¢ NEK;) = ENel(@' NK;) = E\el@ NEK;
= (X\cl@)NE; (the third equality follows from 7.7). Since X\cl@ ¢ 2,
the proof of (B) is completed.

(S) Let G4,...,6G; be in Z and K; c ;U UG,. We can assume
that G; are incomparable by inclusion and do not belong to IL,UL;. The
above assumption and 7.6 show that << 2n—2. By the compactness of
X it follows that there exists a U in I, such that ¢clU c G,U UG,
Hence, by (S'a) there exist &;, & such that K; = G;UG;.

To prove that the incomparability number of 2| K; is n—1, we shall
show that

(%) if H, V are in ? and H, V¢ L;,UL; and HNEK; = VNEK;, then
HcVo VcH

Consider two cases:

(1) HnK; # VnE,;. Hence, by 1.6 for the BISC-subbase 2|K,,
clHN(X\V)nK; = 0. Since X is compact and L; is a chain, there exists
a U in L; such that ciHN(X\V)nelU = @. Since # > 2, we have by
(S'a) and the assumption, clHN(X\V) =@. Hence clH c V.

(2) HNK; = VnK,. Let ze HNK;. Since #|K, is a BISC-subbase,
by 1.4 there exists a @ in Z such that ze¢ GNK; < cl(GNEK;) « HNK;.
By 7.8, cl(§NK;) # HNK,;. We have case (1) for @ and H and for G and V.
Hence clG « H and ¢l@ = V. Hence clGN(X\NH) =glG@n(X\V) =@.
The property (I) for # implies that H < V or V < H.

We shall show that if UeL; or UeL; and ¢ 5 j, then K, ¢ U and
UNnK; # 0. In fact, let Ue L;. Let us assume that K; < U. Since X is
compact and I, is a cbain, there exists a V in I; such that cl¥V < U.
Heuce UeL(V). But Ve L;; hence, by 7.5, I(V) = L; and therefore
Ue L;; a contradiction.
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From this and (+) we infer that in the subbase 2| K, there are 21 —2
non-empty chains disjoint, each to other. Let Ue 2\(L;UL;). By 7.6,
there exists an IL; such that Ue L;. Hence UNK;e I;|K,. Consider D
(see the definition in § 2) for 2#|K;. We have D(UnK,) = L;| K;UL;| K,,
for U considered above. Hence the incomparability number for £ |K;
is n—1.

Thus, by 7.8, 7.9 and Theorem 3, K; is a Tuclidean (n —1)-cube, K;
being metrizable.

7.10. X is a union of (n—1)-cubes K; and K.

Proof. Let xe¢ X. Suppose, on the contrary, that z¢ LU ... VK, U
VUIU ... UK. Hence there exist @; in L, and G; in I; such that z¢ clG;U
vel@, 1 =1,...,n. By 7.6 and (B), X\clGe I, and X\clGje L; and
xe X\eclG, ¢ =1, ..., n. Since L; and L; are chains, we have U; = X\clG;
or X\ecl@;c U; and U,.; < X\clG or X\cl@; c U,,,. Hence, by
(8'b), we have (X\clG)N ... n(X\cl@,) = @; a contradiction.

Consider the set L,uL,. Let & « L;UL; be a maximal family such
that (M {clV: Ve &} £ @. Let B(K;) denote the set of all such & Let
A < X. Then

T(A) ={éeB(K;): (Yeléc A}, where clé = {clV: Ve &},

Let us generate the topology on B(K,) by the family T; consisting
of sets T'(U), where U run over the members of L;UL;.

TAL If @ is in L;UL;, then clT(G) = T(cl@).

Proof. Let £eclT(G) and suppose that &¢ T'(cl@). This means that
() cl& & elG. Hence (ANel@)n(M) elé #@. Let ze(XN\elG@)N (M) clé.
By (C’), there exists an H in £ such that z¢ H < clH < X\cl@. By 7.4,
HeL;UL;. Hence He & Since clH < X\clG, by 7.4 and 7.3 there exists
a W in L;ul; such that ¢lH < T < el = X\cl@. But He &; hence
() elé = elH = TV and therefore &e T(11). Since clWnel@ = @, we have
T(G)NT (W) =@; a contradiction.

Let £e T'(cl@) and suppose that &£¢ el T'(G). Hence there exist G4, ..., G,
in L;UL; such that &e T(G)n ... NT(G,) and T(G)n ... "T(G)nT(Q)
=@. Since N eclt cecl@ and MNelé e Gyn... NG, we have N N
NG.NG #@. Let xeGyn  NGE,.NGE. By (C'), there exist H, in 2,7 =
1,...,7, and H in £ such that e H < ¢clH = @G and se H; < clH; = G;.
Hence zeclH,n... NnclH,.NnelH < G,Nn ... NG.NG. Since G; and G are
in L;uL;, by 7.4 H; and H are in L,UL;. Let e B(K,) be such that
H,,...,H,, H are in 7. Since () clynclH;n nelH,nelH < @,n
...NG,NG, we have 35T (G)n ... nT(G,)NnT(G); a contradiction.

712, If Ge L;UL; and () clénNG +# @ for a & in B(E;), then &eT(@).

Proof. Since Ge L,UL; and () cl£NG 5= B, we have by the maximal-
ity of family & Ge & Hence, by (C') and 7.4, £e T(@).
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7.13. If Qe L,uL;, then T(X\cl@) = B(XE;)\clT(G).

Proof. B(E,)\elT(G) = B(E,)\T(clG) = {é¢ B(EK;): () cl& ¢ clG}.
Hence, by 7.12, M cléncl@ = @. Hence () cl&éN(X\clG) # @. Hence,
by 7.12, &e T(X\cl@).

7.14. Topology T, on B(K;) generates a Hausdorff topology.

Proof. Let &, &'« B(K;) and & # £. Hence, by the maximality of
the families & and &, M cl&én (M) el & = . Since X is compact and &, &
< L;UL;, there exist a @ in & and a V in & such that cl@nclV =@.
Hence, by 7.3 and (B), there exists an H in £ such that ¢1V <« H < clH
< X\eclG. By 7.4, He L;uL;. Hence, by 7.3 and (B), there exists a W
in # such that ¢l@ ¢ W = clW c X\clH. By 7.4, WeIL;UL,. Hence
clHnclW =@ and clV < H and ¢lG@ <« W. By 7.13, (e T(H), &< T(W)
and T(H)NT (W) = 0.

7.15. The subbase T, is a BISC-subbase in B(K;) with the incompar-
ability number equal to 1.

Proof. (B) follows immediately from 7.13.

(C) follows immediately from 7.4,

(I) Let @, V and H be in L;uL; and let cdT(V)nelT(G) = elT(V)N
NelT(H) =@. We have clVnelG =clVnelH=@. Hence, by (I),
G< H or H cG. Hence T(H) =« T(@) or T(G) =« T(H).

(8) Let B(X,) = U {T(@): G¢ R = L;UL;}. Hence, by (B), we have
U {G: Ge< R} = X. Since X is compact and R < I,UL;, there exist
@ and @' in B such that GUE = X. Hence T(F)VT(Q') = B(K;).

Since the incomparability number for I; UL, is one, the incomparability
number of T, is also one.

Let I, =1, ... nK;_nK;, N ... nK,.

716 The space B(K,) is homeomorphic to I,.

Proof. Let &eB(K,) and let hy(&) = I;n () cl€&. We shall prove
that A;(£) is a one-point set. Suppose, on the contrary, that &, () is empty.
Then, by the compactness of X and 7.4, there are @;in K,,i #§,1 =1, ...
.-y H in I; and H' in I such that elGyn ... Nnel@,NclHE NelH' = G.
But n+1 < 2n, for %> 2; hence, by (S'a), two of them, say 4, B, are
such that clAnelB =@, which is impossible. Now, let us assume that
there exist two different points @, y in k(). By 7.1, there exists a ¢ in 2
such that ze G and y¢cl@. By (B), X\clGe £ By 7.6, & or X\cl@& belongs
toL;,4 =1, ..., n. Hence either x or y does not belong to hy(€); a contradic-
tion.

Thus the map : B(K;)»I;c X is defined.

We shall prove that %; is a homeomorphism.

To prove that Iy is one-to-ome, let &, &'e B(K;) and £ =+ £'. Since
&+ ¢, we have MclénM el =@ and therefore hy(&) # Iy (E).
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To prove that %; is onto, let we I;. Let & <= L;uL; be the family of all
those G from L,UL; for which %e cl@. Since we (M) cl&, there exists a &
in B(K,) such that £ < £ Suppose, on the contrary, that x¢ () cl&.
Hence there exists an H in & such that z¢ clH. By (B) and (C’), there
oxists a W in £ such that @« W and clHnelW = @. By 7.6, We L,UL;.
Since xe TV, we have We & c £ (a contrary to z¢ () cl£). Hence there
exists a & in B(K;) such that ze () clénI;, We have k(&) = o for this &.

To prove that h, is continuous, let G 2. By 7.6, Ge L;UL; for some
i=1,...,n If i #j, then @nI; = I, or GnI; =@. Hence H;(GNI,)
="B(K,) or I;7(GnI;) =@. Let Ge L,uL;. We have hi'(GnI;) = T(@).
In fact, if £e T'(@), then () ¢l& = G. Hence () clénI; c @NI; and there-
fore Iy(&)e GNnI,, ie., EchyY(GNL). I Eeh'(GNI), ie., k(&) eGNI,
then (M) clénI; =« GNI;. We have (M) cléNG # @ and, by 7.13, e T(G).

Recall that by 7.14 and 7.15 B(K;) is Hausdorff and compact, X
is a metrizable continuum and #: B(K;)—I; « X is conbinuous, onto
and one-to-one. Hence %, is a homeomorphism and therefore B(K,) is
metrizable.

7.17. The space B(K;) is connected.

Proof. Let us assume, on the contrary, that B(X;) = AUB, where
ANB =0, A #+#0 # B and A, B are open. Let ¢ #7j, i =1,...,n.
Let Ki = {z<K,: there exists a £ in 4 such that ze ;N () cl&)};
similarly we define K7Z.

Let e K. Hence there exists a & in 4 such that e X;n() clé&.
Since 4 is open in B(XK,), there exist &, H in L;UL; such that e I'(G)N
NT(H) < A. Hence ze () clénK; c GNnHNK,. Let ye GNHNK,. Hence
there exists a 5 in B(H,) such that ye (M) clyNK;. Hence () clyn@GnH
#0. By 713, 3¢ T(@)nT(H) = A and therefore y¢ K<. Hence ze¢ GN
NK; < K;'. Hence K7 is open. Analogously, K7 is open. By the maximality
of the families £ in B(XK;) we infer that, if £, 5e B(K;) and £ # 7, then
M clén M ely is empty. Hence KfNK? = @. Thus, Ki and KF are
non-empty, open in K; and disjoint. Moreover, K, = K2UK?. But, by
7.8, K; is a continuum; a confradiction.

7.18. The space B(K,) is a closed segment [0,1], topologically.

Proof. By 7.15, 7.16 and 7.17, B(K;) is a metrizable continuum
with a BISC-subbase 7; with the incomparability number equal to one.
Hence, by Theorem 3, there exists a homeomorphism H: B(K;)—[0, 1]
such that H(L;) = 0 and H(L) = 1.

7.19. Let ze K; and let B, = Z\L; be a mawimal family of those V
for which zeclV. Then A, = (M {clV: VeR}NE; is a one-point set.

Proof. Suppose, on the contrary, that the intersection is empty.
Then, by the compactness of X, 7.4, 7.6 and the fact that R,nL; = B,
there exist fewer than 2n—2 sets in R, having an empty intersection of



24 Characterization of cubes and spheres

their closures with Kj. By 7.4, there exist 2n—1 sets in R, UL; having
an empty intersection of their closures. By (8), there exist two sets in
R_UI; having an empty intersection of their closures. Since z< () {clV:
Ve R}, one of them belongs to L;. By 7.3 and 7.6, the other belongs to L;.
Hence E,NL; # @; a contradiction.

Suppose that there exist two different points ¥, 2in A,. Then, by 7.1,
there exists a G in #\I; such that ze G and y¢ cl@. But ze cl@ or ze X\G
and therefore @ or X\ clG belongs to E,. Hence either z or ¥ docs not belong
to 4,; a contradiction.

Define g;: K,—K;, letting g;(x) be the single point in the above 4.

7.20. The map g; is a homeomorphism.

Proof. To prove that g; is one-to-one let #, y be in K; and & #y.
By 1.1, there exists a @ in & such that ze G and y¢ clG. Hence @ belongs
to #\I; and therefore @ belongs to R,. By (C’), there exists an H in &
such that ze H < clH < G Hence H belongs to E,. By (2), X\clGcR,.
Hence, by (1), clHNnel(X\ecl@) = @. But g;(x)e cl H and g;(y)e cl(X\clG).
Hence g;(@) #* g,(y).

To prove that g; is onto let ze K. Let R, = #\L; be a maximal
family of those U for which ze ¢l U. Hence, by 7.19, () {c1V: Ve R}NK,
is a one-point set, say . But R, = R, and therefore g,(z) = 2.

To prove that g; is continuous let @ belong to £. We can assume that
G¢ LjuL;. We shall prove the formula gy (GNK;) = GnK,;. Let
we gy (GNK,). Hence g;(2)e@nK; ic., (M {clV: VeR}NK; < @NK;.
Hence ({clV: VeR,}NK;NX\Q) =0. But G¢ L,UL;; hence X\cl@
¢L,UL;. Hence there exist 2n—1 sets in R,UL;U{X\clG}, say
Hyy...,H,, ,, such that the intersection of their closures is empty.
Hence, by (8'), there exist two sets in the family H,,..., H,, ;, say
H;, H;, such that clH;nclH; =@. Since K;n (M {clV: VeR} #0,
one of them is X\cl@. Hence the other belongs to R,UL,. More precisely,
since X\clG¢ L,UIL;, the other belongs to R,. Hence we can assume that
H; = X\cl@ and H;e R,. Hence ve clH; = @ This implies that ze GNE,
and therefore g;'(GNK;) = GnK;.

Let ze GNK,. By (C'), there exists an H in & such that ze H < c¢lH
< @. Bince @G¢ I, ULy, @ and H belong to #\IL,. More precisely, @ and H
belong to R,. Hence zeg;'(GNK;) and therefore GNE; = gy (GNK;).

Recall that K;, K; are metrizable continua, and g,: K;—K; is con-
tinuous, onto and one-to-one. Hence g; is a homeomorphism.

We shall call g; the natural homeomorphism. Recall that

Sj=U{E;nE;: i #7, i =1,...,n}0 U (E;nE;: i #j, i=1,...,0}

is the boundary of the cube X, according to Remark 1 in § 6. This means
that §; is an 7n—2-dimensional sphere.
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7.21 Let ze §; and let @, <« #N\L; be a mazimal family of those T
for which xeclU. Then 4, = () clEN(M) ¢lQ,, where (M clQ, = M {clT:
UeQ.}, is a one-point set for arbitrary & in B(K;).

Proof. Suppose, on the contrary, that the intersection is empty.
Since we S;, we have ze K;nK; or we K;NK; for some 4 =1, ...,n and
¢ # j. Let us assume that o K;NnK;. Hence Q,NL; = @. By the compact-
ness of X, 7.4, 7.6 and the fact that Q,N(L,UL;) = @, there exist fewer
than 27 —3 sets in @, having an empty intersection of their closures with
(M clé& By 7.4, there exist 2n—1 sets in Q,UL;UL;, say Hy,...,H,, ,,
such that clH,n... nclH,, ; =@. By (8'), there exist two sets, say
H, and H,, such that clH,NnclH, =@. Since (M) cl@, #0 and () cl§
+# 3, one of them, say H,,, is in @, and the other is in &. Since H,e £ = L;U
ULy, we have H,e I, or H,e¢ L;. If H,¢ I;, then, by 7.4 and the fact that
clH,nclH, =@, we get H,eL;. Hence Q,nL; +#J; a contradiction.
If H,eL; then by 7.4 and the fact that cl H,nclH, = @, we get H, L,
Hence @,nL; # @; a contradiction.

Suppose that there exist z and y,z # ¥y, in (") cl§ such that 2z and
y belong to 4,. Then, by 7.1, there exists a @ in #\ L, such that z¢ @ and
y¢ cl@. But z¢ clG or ze« X\cl@ and therefore & or X\cl@ belongs to Q..
Hence either = or y does not belong to A,; a contradiction.

Define gj: 8; — () cl§, letting gf(&) be the single point in the
above 4,.

7.22. The map gj: S;— () cl& is a homeomorphism for Ee B(K,)
and L; +# & = I;.

Proof. To prove that ¢f is one-to-one let 2, #,¢ &; and @, # a,.
By 7.1, there exists a G in £ such that z,¢ @ and z,¢ cl@. Hence G belongs
to #N\L; and therefore Ge R, . By (C’), there exists an H in & such that
z,¢e H « clH < G. Hence H belongs to E,. By (B), X\clGeR,, and
clHnel(X\eclG) = @. But gj(z)eclH and gi(z,)ecl(X\cl@). Hence
95 (1) #* g;(@,).

To prove that g, is onto, let ze (M) el & Let @, = Z\(L;UL;) be a maxi-
mal family of those U for which zecl U. Suppose that (M) el@;NS; = 3.
Hence M cl@Q,NE,NEK; =@ = M cl@Q;nE;nK fori #jandi =1, ...,7.
Since M cl@,NE;NK; =@ and Q.NL; =@, there exist 2n—1 sets, say
H,,...,Hy_,, in Q.UL,UL; such that clH,n  NeclH,, , =@. Hence,
by (S'a), there exist two sets, say H,, H,, in {H,, ..., Hy,_,} such that
clH,nclH, =@. Since N cl@,nK, #@ # K,;nK;, one of them, say
H,,is in Q, and the other is in ;. Hence H,¢ L;. Hence for each i =1, ...
cvuy My 1 #j, there exists an H,e I;nQ,. For fixed %,¢ % j, we denote
this H, by H'. Accordingly, for each i =1,...,n, ¢ # j, there exists
an H in I,nQ.. Since L, # £ # L;, there exists a U in £ENIL; and there
exists a V in énIZ;. By (8'b),
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clH'N ... nelHVAclTnclH YN ... nelHY nelH N ... nelH 10
NnelVnel 4N ... nelH* =@ .

But (M cl@.n () cl & 7 B; a contradiction. Hence there exists a we () el@,;N
NS;. Now we prove that @, = ;. The inclusion @; c @, is obvious. Let
Ge Q.. Suppose that G¢ Q,. This means that z¢ cl@. By 7.3 and (B), we
infar that there exists an H in & such that ze¢ H and clHnNclG = @. Since
Q: < Q., we have H¢(Q,. Since z¢ H, »¢ cLH and HeQ,, we have He L;.
Since clHNclG@ =@ and He L;, we have Ge¢L;; a contradiction.

Hence ze¢ () cl@,n () cl& and therefore gf(z) = 2.

To prove that g, is continuous let GeZ. We can assume that G ¢ L;UL;.
Then we have the formula

(+) 6N N clé) = @ns,.

Let ze g (@GN N el §),i.e., gf(®)e @GN T cl£ Suppose that z¢ GNS,.
Hence v¢ X\@ = cl(X\cl@). Since G¢ L;Ul;, we have X\cl@¢ LuL;
and therefore X\ cl@e@Q,. Hence, by the definition of the map g;, g (2)
ec(X\cl@)N M elé = (I\F)n () cl£ Hence gf(2)e (X\G)N M) clén
NG N()eclE =0; a contradiction.

Hence gi (6N N cl&) = GNS,;.

Let we G §;. By (4), there exists an H in & such that ze H c elH
< @. Since G'¢ I,U L;, we have H¢ L;uL; and therefore G and H are
in Q,. Hence

gi(@e M el@,n M cléc clHN M el c Gn M) clé.

Hence gf(z)e N () cl& Thus the formula (+) is proved. Eo ipso, the
continuity of the map g; is proved.

Now, 8; is compact and Hausdorff, and gf: §;— () cl¢ is continuous,
onto and one-to-one. Therefore g; is a homeomorphism.

Tor completeness, we denote by gy the identity map on K, and by
gfi the natural homeomorphism defined in 7.20.

For fixed j we shall write only g¢* for ée B(I).

723, If GeP\(LUL), then g*(y)e@ for ye@GnS; and & B(K),
gr‘i:(-y)eG for ye @nK;. Accordihgly, g°(y)¢ G for y¢ GNnS; and &< B(K)),
g"(y)4 @ for y¢ @NE;.

Proof. The proof is obvious by 7.20, 7.22 and the following formulas:

GnEK; = g5 (GNK)),
Gn8; = ¢ (@ N clé).

Let I" < R" denote a Euclidean n-cube, i.e., let I be a product of
n copies of the segment [0,1] = I and let R* be a product of n copies
of the real line. Let dI" be the boundary of I" in R"™ (thus 0I” is the
(n —1)-sphere, topologically). Denote by Iy~! and I?~! two opposite sides
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of dI". We have I*™! =I"'x {0} c I" and I?! = I"'x {1} < I" and
oI = Ii'UIrtud x 1.
For a fixed j, 1< j< n, let h: K,—~I""! be a homeomorphism such
that h|S; is & homeomorphism onto dI™' (this follows from Theorem 3).
Define the map G: 8I">X. Let me I". Hence z = (#,t), where z
is some point in I*! and 0<?¢< 1. Then we set

G(z) = g7 O (2)].

To prove Theorem 6 it remains to show that the map @ is a homeo-
morphism.

G is one-to-one. Let z; # 2, and ,, v,¢ 0I". Hence z, = (24, l,),
ry = (2, y). Since z, # z,, we have 2, # 2, or 1, # i,. Let {, = {,. Hence
H'(t,) < H'(t;) and H'(Y), H '(t,)e B(K;). Hence (M) clH'(f))n
N N clH(ty) =B. But

Yz ) e N LH(2) and g% I [h (2g)]e () CLH (L)

and therefore G(z,) # G(2,). Let 2, # 2, and suppose thati, =1, =t
Since % is an homeomorphism, we have h~1(z,) # kh~!(2,). Since g& '®
is an homeomorphism, we bhave G(m;) # G(z,).

G is onto. Let ye X. Let { « L;UL; be a maximal family of sets
U such that y < ¢l U. We shall show that [ < B(K,). In fact, since y< () cl¢,
there exists a & in B(K;) such that { = £ Suppose that y¢ (M) clé. Hence
there exists a V in NE& such that y¢cl V. By (C') and 7.3, there exists
a W in £ such that g« W and clWnelV =@. Since Ve L,VL, and olWn
nelV =@, we have We L;uL;. Hence Wel < &; a contradiction. Hence
{=¢&

Consider the point z = (h(g"l(y)) H (C)) We shall show that
we dI”.

Let { = L;. Since g% is the mtma.l homeomolphxsm and ye () el
=MNeclL = K we have ¢° (y) = g% (o/)eK, Since H(L;) =1,
we have e I}“l < oI

Let { = L,. Since g% is the identity on K,;, we have gc_'l(y) =ye K.
Since H(L;) =0, we have ze I" - < oI™.

Let L, # ¢ # L. Hence g ' (y)e 8; and therefore h(g (y)) e 1!
(since h(S;) = BI"‘I). Hence ze 91" x I This proves that zedI". By the
definition of the map G we get

G(z) = g#EO [ h(g" )] = F ()] = v

Hence & is onto.

@ is continuous. Let Ue#. Consider the following cases.

(a) Ue L;UL;. Let n: I"—I""! be the projection given by the formula
T(Byy oeey 8,) = (Tyy ...y T,_y) and let o: I"—>I Dbe given by the formula
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o(®yy ..., ®,) = x,. We shall show that

¢Y(U) = o7} |H (T (U))]noI".
Let ze G~ (U),i.e., G(z)e U. Lot & = (z,1). Hence G(x) = & “[n ()]
e U. But

g0 (@)1 = () By-1yNE;
when H™'(t) = Lj;

g O (2)] = M Qu-1y M LE (1)
when L, # H™'(f) # L; and
O ()] = b7 ()

when H7'(t) = I;. This implies that MclH'(#)nU #@. Hence, by
7.12, H'(t)e T(U). Hence te H(T(U)). Hence ze a"(H(T(U)))nOI";

Let e a"‘(H(T(U)))naIf'. Hence ze¢0I™ and « = (2,t) where te
H(T(U)) and zeI"'. Hence G(=) = ¢?"'0[}7"(2)]. Sinee te H(T(T)),
we have H '(1)e T(U). Hence () clH '(f) « U and therefore

O (2)]e () AHY(t) © T.
Hence G(z)e U, ie., e G~'(U).
Since H is a homeomorphism, T'(U) is open in B(K,); cr‘l(H (T (U)))
is open in I" and therefore o“(H (T( U)))naI"' is open in 1"
(b) U¢ L;UL;. We shall show that
G(U) = a~ {(UNK,)) noI".
We have
GHU) = {& = (2, )e OI": gZ ' O[h"1(2)]e U},
Hence, by 7.23,
GHT) = {& = (2, t)e OI": b~ (2)e UNK,}
= {z = (2, ) AT": 2e L(TUNK,)} = n~ (W(UNK,)) ndI*,
Since % is a homeomorphism, UNK; is open in K,; hence h(UNK;)
is open in I"' and therefore n~'(k(UnK,))NdI" is open in OI".
Since # is a subbase in X, ¢7'(U) is open in 0I" for UeZ; hence
@ is continuous.

Thus, dI" is compact Hausdorff, and G: dI"—X is continuous, onto
and one-to-one. Hence G is a homeomorphism.
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