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Introduction

The aim of this paper is to characterize cubes, particularly Euclidean
n-cubes, the Hilbert cube and Tychonoff cubes, as well as Euclidean
n-spheres, as those topological spaces which have subbases with some
prescribed properties. The cubes are characterized by the property of
having the so-called BISC-subbases and some additional properties of
these subbases allow us to distinguish the cases of Euclidean cubes, the
Hilbert cube and Tychonoff cubes. A subbase is called a BISC-subbase
if it possesses the properties (B), (I), (S), (C) (see § 1). One of these prop-
erties, namely the property (8), the so-called supercompactness, was
introduced for the first time by J. de Groot [1], who initiated the study
of this subject. In papers [2] and [3] de Groot and Schnare gave also
a characterization of cubes in terms of snbbases; however, the case of
Tychonoff cubes was not included there.

The second part of this paper deals with a characterization of n-
spheres, where a characterization of n-cubes in terms of BISC-subbases
is applied.

Let us add that topological characterizations of cubes are not known
except the subbase characterization and the well-known characterizations
of closed interval according to Moore and Lennes [4] (for more informa-
tion see Kuratowski [4]). _

For spheres we know only the characterization of the 1-sphére and
the 2-sphere (the last due to Kuratowski [4]).

The situation is different if the space is assumed to be a manifold;
then e.g. a characterization of n-cubes due to Doyle [7] is known.



§ 1. BISC-subbases

Let X be a topological space. Let £ be a subbase of the topology
on X such.that
(B) if Ue?, then X\clUeP;
(I) (inclusion property) if U, V are in P and there exisis a G in 2
such that
celUncl@ =clVNnel@ =0,

then UcV or VcU;

(8) (supercompaciness property) if # < Z and |J # = X, then there
exist U and V in & such that TUV = X;

(C) (closure separation property) if @ and y are in X and @ # y, then
there exists a U in & such that v¢ U and y¢clU. _

The subbases satisfying the above conditions will be called BISC-
subbases.

The properties (C) and (S) imply that X is Hausdorff and compact.
In virtue of property (B) it suffices to consider only BISC-subbases which
congist of regularly open sets and are such that @ and X do not belong
to 2.

11. If <P and () {clW: WeR} =0, then there exist U and
V in ® such that clUnclV =@.

Proof. The above follows immediately by properties (B) and (S) for 2.

12. If Ue? and x¢ clU, then there ewists a V in P such that eV
and clUnNclV =@.

Proof. If y e ¢c1U then, by (C), there exists a W in & such that 2e¢ W
and y ¢ olW. Let £ be the family of all such W. Then c1 TN {clW: We &}
=@. By 1.1, there exist two elements, say V and V', in #U{U} such
that clVnel V' = @. Since oc (M) {lW: WeR}, V or V', say V', is U,
and the other V belongs to #. Clearly, » belongs to V, the required set
in Z for U

13. If UeZ and we U, then there exists a V in P such that TUV = X
and zdclV.

Proof. If y¢ U (such a y exists since X ¢ &), then, by (C), there exists.
a 1 in 2 such that ye W and o¢ clW. Let £ be the family of all such TV,
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Then UU%=X. By (8), there exist two elements, say V and V', in U U}
puch that VUV’ = X. Since ¢ J # and U # X, V or V', say V',is U,
and the other, V, belongs to 2. Clearly z¢clV and V is the 1eqmrad
set in # for U and 2.

1.4. If Ue P and < U, then there exists a V in P such that ze V < clV
cU.

Proof. Since U ## X, there exists a  in X such that y¢ U. By 1.3,
there exists a G in & such tha,t zd clG and UU@ = X. By 1.2, there exists
a Vin 2 such that e V and ¢l VNel@ = @. Thus, since U V and @
are regulary open, we get xeV c clV < cl(X\cl@) = X\@ < T.

1.5. If Ue P and ¢ cl U, then there exisis a V in P such that lU = V
and zd clV.

Proof. Since x¢ cl U, by 1.2, there exists a @ in £ such that @
and clTncl@ = 0. By 1.3, there exists a V in & such that x¢ clV and
Yu@ = X. Thus, z¢clV and ¢lU <« X\clG =« I\Gc V.

16. If Uand Varein 2, Uc Vand U # V, thenclU < V.

Proof. Suppose, on the contrary, that (1) ¢l U ¢ V. Since all members
in 2 are regularly open, V\clU # @. Let (2) we V\clU. By 1.4, there
exists a @ in 2 such that (3) 2e¢ @ and (4) cl@ = V. Let y¢cl V. By 1.5,
there exists a W in & such that (5) y¢ clW and (6) clV =« W. By (B),
XN\clVe#?. From the fact that U< V¥, (4) and (6) it follows that
cl@nel(X\clW) = el Uncl(X\clW) =0@. By (I), § = U or U = @. But
from (2) and (3) it follows that G ¢ U, and from (1) and (4) it follows
that U ¢ @; a contradiction.

1.7. If U, V are in 2 and clU < V, then there exists a G in & such
that clUcGccl@c V.

Proof. Let z¢ cl U. By 1.2, there exists a @& in & such that o< @ and
elUnel@ =@. Let # be the family of all such G. Then VUl £ = X,
By (8), there exists a @ in # such that VU@ = X, In virtue of (B),
XN\cl@ ¢ 2. Thus clU c X\cl@ = el(X\clG') = NG’ <= V.

§ 2. The families D(U) and €(U) and the spaces Xy
for a given U
For U belonging to £ let
D(U) ={Ve?: Ve Uor X\clUc Vor VeX\clUor Uc V3.
Let us begin from some simple properties of operation D.
2.1. If U2 then D(U) = D(X\eclU).
2.2. If VeD(U) then X\clVe D(U).
2.3. If U and V are in & and UNV =@ then D(U) =-D(V).
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Proof. (Only the proof of 2,3 is needed.) Let Ge D(U). If @<= U
then @ = (X\ecl V), Hence Ge D(V). If U c @, then there exists an H
in # and we U such that xze H and clH < U. Hence clVNnelH =@
=clHNn({X\GQ) = clHncl(X\cl@). Since V, H and X\clG@ Dbelong
tee?; by (I), V < X\cl@ or I\cl@ < V. Hence X\clGe D(V), and,
by 2.2, Ge D(V). If X\clU = G, then X\clG =« U. Hence, V = G. If
G < X\clU, then U < X\cl@. By 1.4, there exists an H in £ such that
¢clH c U. Hence clVnclH =@ = cl@neclH. Hence, by (I), Ge D(V).
Thus we have D(U) « D(V) in all possible cases. By symmetry D(V)
c D(U).

24. If U, Ve? and U < V then D(U) = D(V).

Proof. Since Uc V, we have Un(X\clV) =@. By 2.3, D(U)=
D(XN\eclV) and, by 2.1, D(X\clV) =D(V); D(U) =D(V).

2.5. If Ue? and UeD(V) then D(U) = D(V). <

2.6. If U and V are in & then D(U) = D(V) or D(U)ND(V) = A.

Proof. Let D(U)ND(V) #@. Then there exists a @ in & such thaf
@eD(U)ND(V). By 2.5, D(G) = D(U) and D(@) = D(V). Hence D(U)
= D(V).

In virtue of 2.6 we have a partition of #: U and V are in the same
element of the partition iff D(U)= D(V). Then, by the Axiom of Choice,
there exists a set & ¢ # which has exactly one clement in each element
of the partition.

The cardinality of & is called the incomparability number of 2.

If Ues then let C(U) ={VeD(U):V<Uor Uc ¥V} Let Xy
= C(U)u{0}u{l}, where 0 and 1 are elements which do not belong to
c(0).

Let us generate in X a topology by the sets

[0, V) = {0}U{Ge O(T): G < V},
(W,1] = {@e C(T): W < G}ufl},

where W and V run over C(U).
27. If V and W are in C(U), then V< W or We V.

Proof. To prove this, we consider two cases. (The remaining two
are trivial.)

1. Let U< V and U =« W. By 1.4, there exists an H in & such that
clH = U. Hence clHncl(X\clV)=clHNcl(X\clW) =@. Hence, by
(I), Ve Wor WecV.

2. Let V< Uand W< U. By 1.2, there exists an H in & such that
clHnelU =@. Then clVNclH =clWnelH =@ and, by (I), we get
VeWor We V.
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28. If UeC(V), Ge 2 and U = @ then Ge C(F).

Proof. We shall show that @ = ¥ or V < G. Since Ue O(V) =« D(V),
we have by 2.5, D(U) = D(V).

Let V < U. Since Ge D(V), we have (by the definition of D(V))
GcVor Ve@or XN\celVec@or Gec X\clV. In the first two cases
we get Ge C(V) immediately. The remaining cases are impossible.

Let G < XN\clV. Then V « X\cl@. Hence X\eclGe (V). By 2.7,
Uc X\cl@ or X\clGc U. Since G U, we have G < X\cl@ or
Gu(X\cl@) c U; a contradiction.

Let X\clV = @G. Then X\cl@ « V. Hence, X\clGe C(V). By 2.7,
U c X\cl@ or X\cl@ < U; a contradiction as before.

210. If V, We %, V =W, Ue D(V) and He D(W) then clUnclH
#@.

Proof. The proof is obvious by 2.3.

211. If U, HeC(V) for some V in &, then clUnclH =0 and
(X\U)n(X\H) #0@.

Proof. The proof is obvious by 2.7.

2.12. The spaces Xy are linearly ordered, having the first and the last
elements.

Proof. We define an ordering in X; as follows:

Let wand y bein Xy, and let 2 #2y. If 2 =0, thenz < y. If y = 1,
thenz<y. If 0 o % 1and 0 #£y 3 1, then x and 4 are in C(U). Then
let z =V and y = W. We say that s <y iff clV =« W.

By 2.7 and 1.6, the relation < is a linear ordering of X;. 0 and 1
are the first and the last elements, respectively. Clearly, [0, V) = {ze Uyp:
<V} and (W,1] = {ye Xy: W<y}, so the topology of Xy is the
order topology induced by the ordering defined above.

§3. A lemma on chains in maximal BISC-subbases
of continua

Since the properties which appear in the definition of BISC-subbases
depend on finite subfamilies of the BISC-subbase £, by the Kuratowski —
Zorn Lemma each BISC-subbase is contained in a maximal one.

Let X be a continuum and let # be a maximal BISC-subbase for the
topology on X. Let G be a fixed member of Z. Let R(@) be the family
of all U in £ such that UnG = @. We shall prove in this section a lemma
on chains in R(G).

Before proving the lemma, let us note some preliminary facts.

3.1. If L is a chain contained in 2 and suoh that ) {clU: Ue L}nelV
=@ and clJ LnclV £, then |J L =2X\clV.
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Proof. The inclusion | L < X\clV is obvious.

To prove that I\elV < [J L let us assume that there exists an
« in X\cl ¥V such that z¢ ) L. By 1.4, there exists an H in & such that
zeH c clH < X\clV. Hence clHNclV =clUnelV =0 for each U
in L. Hence, by (I) and 1.6, el U =« H. From this it follows that cl{ ) L c
clH; a contradiction,

3.2. If L is a chain contained in RB(Q), then 2V{{_ L} has property 1.1.

Proof. Let cllJ LnelV N ... NnelVy, =@ where Ve # for ¢ =1, ...
.oy k. Since ¢l U < cl{J L for each Ue L and L is a chain, by 1.1 for &
there exists a V,in {V,,..., V;} such that el Uncl V; = @ for each U in L.
Olearly, we may assume that V; ¢V, forl + j. Hence ) {clU: Ue L}Nncl ¥V,
=@ . Ifell J LNelV; # @, then, by 3.1 | L = X\cl V. Hence cl(X\cl V;)
NelV; =@ for some j +# . Clearly, we may assume that clV,n... nel 7y
#@. Thus V; < V, for ¢ + j; a contradiction.

3.3. If w¢ cllJ L, then there exists a V in P such that z¢ V and
cdJ LnelV =@.

Proof. By (C), there exist V,, ..., Vi in £ such that e VN ... NV,
and cll ) LnelV,n... nclV, = @. By 3.2, thee exists a V; such that
ze V, and cllJ LnclV =4a.

3.4. If mdclJ L, then there exisis a V in & such that cl|J L=V
‘and og¢clV.

Proof. The proof is obvious by 3.3 and (B) for £.

. 35. If Ve® and A L < V, then there ewists an H in & such that
el UHc HcclH V.

Proof. By 3.3, for each z¢ cl( ) L there exists a W in & such that
ze W and ellJ ZneclW = @. Let # be the family of such sets W in 2.
Hence | 2UV = X. By (8), there exists a W' in # such that W' uV = X.
By (B) and the definition of family 2, we get X\clW'e £ and elW'nellJ L
=@. Hence cllJ Lc X\clW cel(X\clW)=X\W V.

3.6. If L is a chain contained in R(Q), then 2U{J L} has the prop-
erty (S).

Proof. Let X =(J Lud,u UG, and GHU ... UG, # X. Since
Gie?,i=1,..,k and I c 2, by (8) there exists a @; and. there exists
a UeL such that UUG; = X. But U< {J L, and hence U Lu@; = X.

3.7. If L is a chain contained in R(G), then PU{J L} has property (T).

Proof. Let H, H'¢# and clHncll J L = clH' nel H = @. For each
U in I there is ¢lU <= ¢l J L. Hence clHNelU =@ =clHNclH’, for
each U in L. From (I)it follows that U <« H' or H' = U for Ue L.

If for each UelL there is U < H', then |J L < H’. If there exists
an U in L such that H' < U, then H' = U-L
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Let Hy, H'e# and clHndlJ L = clH'nellJ L = 0. If Ue L, then
clU ccll JL. Hence clHNelU =clH'NnclTU =@. From (I) it follows
that H <« H' or H' <« H.

3.8. If L is a chain contained in R(Q), then | L is vegularly open.

Proof. The proof consists in showing that Intell J L=\ L; U L
being open.

Let e Intell J L. Since 2 is a subbase in a compact space, hence
there exist @, ..., @ such that

we@N...NG, and clGn... Nnel@, < IntelY L.

We shall assume that one of G4, 7 =1,..., k, is such that cll J L = G;.
By 1.4, there exists an A in & such that cl4 < G. Hence we may assume
that X\cl4 is one of @&; and we have cll J L = X\clA4. Since X is con-
nected, we have cll ) L ¢ G; for some =1, ...,%.

Let Gy,y...,G;, 1<j<k, be all those @; such that ellJ L < G,.
By 2.7, those G, form a chain, say @y = ... = @;. By 3.5, there exists an
H in #?such that cll JL < H c ¢lH < @,. From X\clHe¢Z and el J In
nel(XN\clH) =0 we get clGyn ... nelG;n ... nelGN(XIN\NH) =0. By
1.1, there exists a @3, | =1, ...,k such that cl@;Nn(X\H) = @. Since
el N(X\H) # 0, we have cllJ L ¢ G,.

If UeL, then elU c el L and cl Un(X\H) = cln(X\H) = @4.
By (I), for each U in I, there is U = G, or G, = U.

If G, U, for some U from L, then 2¢e@; < U = | L. Hence we
get the following implication: if ze Intcll J I, then z¢ {J L. Now, sup-
pose that for each Ue L there is a U < @;. Hence | L c ;. By 3.4,
for y¢ clJ L, there exists a W in £ such that y¢clW and ol J Lc W.
Let # be the family of all such sets W. Hence () £ = cl| L. For each
set in ZU{G;} we have 4A¢C(U) for some UeL and 4AeZ2U{G;}. By 2.7,
we have H « W or W < H for each H, W in ZU{&}.

If W@, for some W in £, then cllJ L < @;. But this is impos-
sible, because cllU) L ¢ G;.

Hence, for each W in 4%, G; < W. Hence, G; = (| £ = ¢l_J L. But
@, is regularly open; hence Intcll J L = Intel@, = G; and Gy = IntclG,
< IntelJ L, ie., @ = IntcllJ L. By 1.4, there exists a ¥ in £ such
that 2¢ V < elV = G4. By 1.4, there exists a 7 in # such that clT < G.
Since ¢l J ZN@ =@ and el V < cl(JL, for each U in L we have clUnclT
=clVnelT =@. By (I) we have Uc V or V < U, for edch U in L.

If for each U in L we have U c V, then | J L = V. Hence IntcllJ L
< IntelV = V and consequently & = V. But ¢l¥V < @, and hence &
= ¢cl@;; a contradiction.

Hence it is proved that there exists a U in L such that ¥V < U. But
geVand V ¢ U c |J I, and hence ze | L. We get the required inclusion
IntellJ L = U L, # being an arbitrary point of Intell) L.
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LeMMA. If L is « chain contained in R(G), then ) Le R(G).

Proof. By 3.4, for each ¢ cl ) L there exists a 7, such that ¢ V,
and cl¥.nel U L =9. Let L' be the family of all such V,. Since I is
a chain, by (I) L’ is a chain and X\cl |J L = |J L'« R(U) for each
UeL. Hence 2uU{lJ L,|J L'} has property (B).

From the facts proved above we have (J L and {J L'« 2. Since
for each UeL, UnG =0, we have (J LnG =&. Hence |J Le R(@).

§ 4. Further properties of the spaces Xy

As Dbefore, let X De continuum, # a maximal BISC-subbase and &
a subfamily of & defined in § 2. We consider for a-given U in & the sub-
families C(U), Xy = {0}uC(U)U{1}, with the order topology introduced
there.

We shall show that X, are Hausdorff and compact and that each
element from C(U) separates X. This will be done by proving some
lemmas.

4.1, If VeC(U), then [0, V)NV ,1] =4.

Proof. Suppose that there exists a G'e C(U) such that Ge [0, V)N
N(V,1]. By the definition of sets [0, V) and (V, 1] we get cl V < @G and
cl@ = V. Hence clV = V is closed-open. But Ve #, and hence clV is
different from X; a contradiction.

4.2. If VeC(U), then X N\{V} = [0, V)U(V, 1]

Proof. Since V¢ [0, V)U(V, 1], we have [0, V)U(V,1] =« X, \{V}.
Let GeC(U) and @ # V. In virtue of 2.7, clG =V or elV =@ If
clG = V, then Ge[0,V). If clV =« @, then Ge(V,1]. Thus Xy\{V}
c [0, YU(V, 1]

4.3. If VeC(U), then {V} disconnecls Xy.

4.4.- The spaces Xy, Ue, are Hausdorff.

Proof. Let z and ¥ be in X;; and let z # y.

If 2 =0 and ¥y =1, then 0¢[0, U), 1¢(U, 1] and by 4.2, [0, U)n
n(U,1] =0.

If 4 =0 and y = Ve C(U), then there exists a @G in £ such that
cl@ = V. Hence Ve(G,1], 0¢[0,G) and, by 4.1, [0,GNn(G,1] =6.

If 4 = VeC(U) and ¥y = 1, then there exists a G in £ such that
clV=G. Hence Ve[0,@G), 1¢(G,1] and by 4.1, we get [0,G)N(G,1]=0.

If z =V,y =W and V, We(O(U), then, by 2.7, clV =« W or clW
c V. Suppose that elV « W. By 1.7, there exists a @ in £ such that
clV =« @cclG@c W. In virtue of 2.8, we have Ge C(U) and Ve [0,d)
and We(G,1]. By 4.1, we get [0, @)N(G,1] =@.



4. Further properties of the spaces Xy, 13

4.5 The spaces Xy, Ue7, are compact.

Proof. Let Ue& and let J be an open covering of X5. By the
Alexander Lemma we can assume that the elements are in a subbase
consisting of [0, W) and (V, 1]for W and V running over ¢(T7). Decompose
J into two disjoints parts:

T, ={WeT: W =[0,4) where -GeC(T)},
T, = {WT: W =(G,1]  where Ge C(U)},

Let L, = {G<C(U): [0,@)eT,}. By 2.7, L, is a chain in £. Consider
two cases.

1. There exists an H in £ such that for each @ in L, we have HN@
=@.
In virtue of the Lemma, we have {J L,e#. By 2.8, | L, 0(U).
Since U L;¢ \J{[0,G): GeL,} and 7 is a covering of Xy;, there exists
a W' in T, such that (J L, « W'. Let W' = (@, 1). From the definition
of (&, 1], it follows that cl@ < (U L,. But X is compact and I, is a chain;
hence there exists an V¥V in L, such that cl@ < V.

We shall show that [0, V)U(G', 1] = X. Suppose that there exists
a D in C(U) such that D¢ [0, V) and D¢ (G, 1]. Since D¢ [0, V), we have
clDg¢ V. But De C(U), and hence, by 2.7, D =« Vor V « D. Since D¢ (G/, 1),
.we have cl@ ¢ D. But De C(U), and hence, by 2.7, Dc @ or @' < D.
Since D # G and D # V, we have clD c @ and clV <« D and conse-
quently D = el D is closed-open. But clD is different from X as a member
of 2; a contradiction in virtue of the connectedness of X.

2. For each H in # there exists a @ in L, such that Hn@ 5+ . Since
1¢ U {W: WeT,} and 7 is a covering of X;;, we infer that there exists
a WeT,=Z such that 1eTV.

Let W = (F,1]. We shall show that ¢lF < (J L,. Suppose that
clF¢&J L,. Then by 2.7, for each G in L, we have & = F. Hence | J L, c F.
Since X\clFe 2, for G in L, we get (X\elF)n@ =3; a contradiction.

Thus clF = | L, and we infer that there exists a G' in I, such that
clF < @ (X being 2 compact space and L, being a chain). Hence [0, G')U
U(F, 1] = XU'

Note. In fact, it has been shown that X, are supercompact.

4.6.If Ue 2, then there exists a V e such that Ue C(V)or X\clUe O(V).

Proof. Let UeZ. Then there exists a V in & such that Ue D(V),
Since Ue D(V), wehave Uc Vor Ve UorX\ectV e Uor U c X\clV.
In the first two cases Ue C(V) obviously. In the last two cases we get
X\clUe C(V), since the members of £ are regularly open.

4.7. The spaces Xy, Ue, are linearly ordered Hausdorff compacia
with the first and the last elements.
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Proof. This is obvious by 2.2, 2.12, 4.4 and 4.5.

4.8. If U and V belong to O(@), Ge & and we V\cl U, then there emisis
a WeC(F) such that ze FrW.

Proof. Since U, Ve C(G), wehave, by 2.7, U= V or ¥V = U. Since
P\elU # 9, we have, by 1.6, clU < V.

Let # be a maximal family of elemets of 2 such that for each W in
R, x¢TWand Uc W.Since UeC0(@) and Uc W for WeR = &, we
have, by 2.8, WeC(@) for We#. Then, by 2.7, WcV or Ve W
for each We#. But ze V and x¢ W, and hence, by 1.6, clW < ¥ for
We%. By 2.7, # is a chain and Wn(X\clV) =0 for We £. Then, by the
Lemma and 2.8 we have W = {J #¢ C(@), and z¢ W. By the maximality
of # and by (B), we get mecllV.

§ 5. The Main Lemma

Let X,2,% <« 2, and Xy for Ue & be as before.

MAIN LEMMA. Let Y be the produet of Xy, and let ny,: Y —X, be the
projection, where Ve . Then Y is homeomorphic to X.

Proof. Let ye Y. Decompose & into three parts, setting

Fo(y) ={VeF: mp(y) = 0},
F1(y) ={VeF: mp(y) =1},
Z3(y) ={Ve&: mp(y)e O(V)},

Clearly, these parts are disjoint.

If VeSo(y), then let Top(y) = () {clU: el U = V}.

If Ve#,(y), then let Ty (y) = () {X\U: clV = U}.

I Ve Pa(y), then let T,p(y) = clUN(X\U) = FrU, where zp(y)
= T.

Let

Hy =N {Tor(y): VeFo()}n N {Tap(y): VeF1(y)}D
NN {Tap(y): VeFs(y)}.

By 2,10, 2.11 and 1.1, H, is non-empty. We shall prove that H, is
2 one-point set.

Let us assume, on the contrary, that there exist two different points
w and z in H,. By (0), there exists a & in £ such that we G and 2¢ cl@.
By 4.6, there exists a V in & such that Ge O(V) or X\cl@Ge C(V). By
symmetry, we can assume that G'e C(V). Then we consider ny(y). There
are three possible cases.

Let mp(y) = 0. Since Ge O(V), we have G V or ¥V c G By 1.4,
there exists a W in £ such that clW < @ and ¢lW < V. Then, by the
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definition of O(V), We O(V). But clW < @ and 2¢ cl@, and hence z ¢clW.
But Typ(y) = clW, and hence z¢ Ty, (). But H, < Ty, (y), and hence
z¢ H,; a contradiction.

Let np(y) = 1. In this case we get a contradiction as before if we
pass to complements.

Let 7y (y) = Ue C(V). Since w,2¢ H, =« Fr U, we have @ & U and
Ud G But U,GeC(V), and hence, by 2.7, U< @ or G = U; a contra-
diction.

Define h: ¥—X, letting h(y) be the single point in H, for ye Y.
We shall prove that h is a homeomorphism.

To prove that % is one-to-one, let us assume that there exist two dif-
ferent points w and 2 in ¥ such that i(w) = h(2), i.e.,, that H, = H,.
Since w,ze ¥ and w # 2, there exists a V in & such that n, (w) # ny(2).

Let =y (w) = 0 and 7, (2) = 1. By 1.4 and 1.5, there exist @, U in
Zsuch that cl@ =« VandelV <« U. Hence clGN(X\TU) =@. But H,, c cl@
and H, c X\U. Hence H,NnH, =@ and therefore h(w) # k().

Let znp(w) =0 and =p(2) = Ue C(V). Since UeC(V), we have
Uc Vor Ve U. Then, by 1.4, there exists a @ in & such that clG < V
and cl@ = U. Hence, Ge O(V) and FrUnecl@ =@. But H, < cl@ and
H,c FrU. Hence H,nH, =@, ie., h(w) # h(2).

The case where z,(w) = Ue C(V) and ny(2) = 1 is dual to the pre-
ceding one.

Let ny(w) = U and mp(2) =& and U, Ge (V). Then, by 1.6 and
2.7, elU= @ or el@ = U. Hence FrUn¥r @ =@. But H, < Fr U and
H, c FrG. Hence H,NH, =0, ie., hiw) # h(2).

To prove that h is onto, let we X. We define a y in ¥, defining its
coordinates y, for each Ve & as follows. Let Ve &. If for each U in O(V)
we have x¢ U, then we set yp = 1.

If for each U in C(V) we have ¢ U,.then we set y, = 0.

If there exist U and @ in O(V) such that ze G\cl U, then by 4.8,
there exists a W in O(V) such that v« FrW. Then we set y, = .

It is obvious that we H, and therefore i(y) = 2.

To prove the continuity of & let Ue%. There are two cases.

There exists 2 ¥ in & such that Ue O(V). We shall prove that 2~ (T)
= a3'([0, U)). To check this let ye2~'(U). Hence h(y)¢ X\T, ie,
H,N(X\T) =0. Since X\clUeZ and each element of the families whose
interseetion is H, belongs to 2, by (B) there exists a W such that elWn
N(X\T) =@, ie, clW < U. By 2.9, WeC(V). If z=p(y) is different
from 0 and 1, then ny(y) = W. Hence =y (y¥)e [0, U). If ny(y) = 1, then
T.7(y) « I\T, ie., T,y (y)nU =0. Hence, H,NU =0, i.e., h(y)d U;
a contradiction. If @y (y) = 0, then ye=5*([0, U)) obviously. Thus the
inclusion A~'(0U) < =7 ([0, U) ) is proved. Let #e n,,l([o U)). Then
ay(4)e [0, U). If np(y) # 0, then =y (y) = @ for some & in C(V). Hence













































