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Introduction

The fundamental boundary value problem in the theory of ordinary
differential equations with multi-valued right-hand side is the Cauchy initial
value problem, which is formulated as follows:

Let U be an open subset of R! x R™ (or let U = [0, a] xR"), (tg, Xo)e U
and let F: U —> R" be a multi-valued mapping. The question is what con-
ditions about F are sufficient for the existence of an open interval J < R!
and an absolutely continuous function x: R! — R" satisfying the following:

(i) toed and x(to) = xo;

(ii) for each teJ, (t, x(1))eU;

(i) x'(t)e F(t, x(t)) almost everywhere on J.

Forty five years ago A. Marchaud [72], [73] and S. K. Zaremba [102],
{103] showed that if F is a multi-valued mapping with convex compact
values and it is continuous (with respect to the Hausdorff metric), then the
above question has a positive answer.

In 1961, T. Wazewski [97] gave the solution to this problem for convex-
valued upper semi-continuous mappings.

The above problem for convex-valued mappings, which satisfies the
Carathéodory type conditions was first studied by A. F. Filippov [30] and T.
Wazewski [99], and developped by A. Plis [84], C. Castaing [16], [17], A.
Lasota and Z. Opial [67], A. Lasota [62], J. M. Lasry and R. Robert [69]
and others.

In 1970, H. Hermes asked about this problem for mappings which are
not necessarily convex-valued. The first to give a positive answer to Hermes’s
question was A. F. Filippov. Note that Hermes’s question has been studied
by several authors, for example see: [4], [11], [52], [70], [81], [90], [93].

One of the most remarkable methods in the theory of differential
equations (with a single-valued right side) consists in the applications of the
topological degree theory or some consequences of this theory, for example
topological fixed point theorems, the Browder invariance of domain theorem
or the Borsuk antipodes theorem.

It is known that the topological degree theory is well developed for
multi-valued mappings (comp. [40], [41], [22], [71], [14], [10]).
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Therefore, it is quite a natural question how to apply this theory to
differential equations with 2 multi-valued right side. The first results in this
direction belong to A. Lasota and Z. Opial [67], [68). Later, some results of
this type were given by A. Lasota [62], J. P. Aubin and A. Cellina [5], J. M.
Lasry and R. Robert [69], U. G. Borisovic, B. D. Gelman, A. D. Myskis and
V. V. Obuchovskii [10].

Note that in all of the above papers use was made only of some
consequences of the topological degree theory for first order boundary value
multi-valued problems.

In this paper we present a systematic study of multi-valued boundary
valued problems (not necessarily of first order) by using the Leray-Schauder
degree theory.

In this order we introduce the notion of admissible multi-valued boun-
dary value problems (comp. [91]-[92]) and we define the Leray-Schauder
degree theory for such problems. Several applications of this method are
presented.

The paper is arranged as follows. Chapter I contains some preliminaries
from functional analysis. Chapter II is devoted to multi-valued mappings. In
Chapter III we introduce a class of admissible boundary value problems and
we develop the Leray-Schauder degree theory for such problems.

Finally, Chapters IV, V and VI contains applications of the results given
in Chapter III. In particular, we obtain the following existence theorems for
multi-valued boundary value problems:

1. The Cauchy, the Nicoletti and the Floquet boundary value problem
for first order differential equations (not necessarily with a convex-valued
right side).

2. Problems with nonlinear boundary conditions for first order differ-
ential equations (not necessarily with a convex-valued right side).

3. The Picard boundary value problem for second order differential
equations (not necessarily with a convex-valued right side).

4, The Darboux problem for hyperbolic partial differential equations
with a convex-valued right side.

S. Problems with nonlinear boundary conditions for hyperbolic partial
differential equations with a convex-valued right side.

6. The general boundary value problem for elliptic partial differential
equations with a convex-valued right side.

Acknowledgement. The author should like to express his thanks to
Professor Lech Goérniewicz for inspiring his interest in the above problems
and continued help during the preparation of this paper.
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I. Preliminaries

In this chapter we give a few basic definitions and facts concerning
functional and mathematical analysis, and measure theory which will be used
in our later considerations. By space we will always mean a real Banach
space.

1. Strong convergence and weak convergence in Banach spaces. Let
(E,|l*]) be a Banach space with the norm ||‘]| and let E* denote the
conjugate space of all linear continuous functionals from E into the set R of
real numbers.

A sequence {x,} = E is said to be convergent, or strongly convergent, to a
point xeE (written {x,} — x) if li"m [Ix,—x|]| = 0. Then the point x is called a

strong limit of the sequence {x,).
A sequence {x,} < E is said to be weakly convergent to a point xeE
(written {x,} — x) if, for every functional feE*, lim f (x,) =f(x). Then the
w n

point x is called a weak limit of the sequence (x,}.

It is clear that every strongly convergent sequence in E is also weakly
convergent.

If the points x,, X,, ..., X, are in the space E and the non-negative
coefficients ¢y, ¢,, ..., ¢, satisfy ¢;+...+c¢, =1, then the linear combination
¢y Xy +...+c,x, is called a convex combination of the points x,, X5, ..., X,.
Recall the following connection between the above two types of convergence.

(1.1) (Mazur TueoreM, [100]). Ler a sequence {x,) be weakly convergent
in the space E to a point x€ E. Then for every n there is a convex combination
Vo =Cy X1 +...+¢, X, of the points xy, ..., x, such that {y,} —x.

2. Compact and weakly compact sets in Banach spaces. A subset X of the
space E is called relatively compact if its closure X in E is compact.

A subset X of E is called relatively weakly compact if every sequence
{x,} in X contains a subsequence which converges weakly to a point x in E.

A subset X of E is called weakly compact if every sequence {x,} in X
contains a subsequence which converges weakly to a point x in X.

Let ' E— E, be a linear mapping from E into a Banach space E, . For
any X c E, T(X) denotes the set {yeE,: y = T(x), xe X} and is called the
image of X under T. In particular, Im T denotes the image T(E) of E under T
and is called the image of T, and Ker T'denotes the set {xeE: T(x) =0} and
is called the kernel of 7. Note that Im Tand Ker T are linear subspaces of E,
and E respectively.

The following fact clearly results from the respective definitions.

(2.1) ProrosiTION. Let T E — E,| be a linear continuous mapping and let
X and Y be two relatively weakly compact subsets of E. Then:
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(2.1.1) the set X+Y ={x+y: xeX and yeY}] is a weakly relatively com-
pact subset of E,

(2.1.2)  the image T(X) of X under Tis a relatively weakly compact subset of
E,.

Let E** be the conjugate of the Banach space E*. The mapping »: E
— E**, given by the following condition: for every x€E, x(x)(f) = f (x) for
every fe€E* is called the natural embedding of E into E**.

The space E is called reflexive if Im x = E**,

For an arbitrary subset X of E we will denote by conv(X) the
intersection of all closed convex sets containing X. It is easy to see that
conv(X) is a minimal closed convex set containing X.

In what follows we will make use of the following two facts from
functional analysis:

(2.2) (Mazur THeoreM, [100]). If X is compact subset of the Banach
space E, then the set conv(X) is compact.

{(2.3) (BANACH~BourBakl THEOREM, [3]). The Banach space E is reflexive
if and only if its closed unit ball B, = {xeE: ||x|| <1} is weakly compact.

3. Weakly compact sets in the space of integrable functions. Let R" be an
n-dimensional euclidean space with the norm given by putting |x| = (x?+...
v..+x2)!% where xeR", x = (x{, ..., x,). Let U be an open bounded domain
in R" and let *(U; R%, 1 < p < oo, be the Banach space of all Lebesgue
measurable functions (equivalence classes) w: U — R* for which | |w(x)|"dx

7

< o, with the norm

liwll, = (f [w(x)I” dx)'7.

U
Recall that the space %7(U; RY) is reflexive iff 1 < p < o0,

From the above and Theorem (2.3) we obtain the following two facts.

(3.1) ProposITION. Let a real number p satisfy 1 < p < 0o. Then the space
ZP(U; RY) is reflexive.

(3.2) ProrPoSITION. Let a real number p satisfy 1 < p < oo. Then every
bounded subset of &°(U; R¥) is weakly relatively compact.

We note the following fact.

(3.3) ProrosiTioN [28). If a sequence (w,} in ¥?(U;R¥ is strongly
convergent to a function we P (U; RY), then there exists a subsequence (Wai)
which is convergent almost everywhere to w, i.e. lim w,; (x) = w(x) a.e. on U.

J

The following theorem gives a characterization of weak compactness in
LU, RY.
(3.4) (Dunford-Pettis Theorem, [29]). A set X = #Y(U; RY) is relatively
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weakly compact if and only if the following three conditions are satisfied:
(i) the set X is bounded in &' (U; RY);
(i) for every number & > O there exists a number 6 > 0 such that if we X
and A is a measurable subset of U with the Lebesgue measure p(A) < 8, then

[ Iw(x)dx <e;

(iii) for every number ¢ > O there exists a compact subset K of U such
that if we X, then

[ w(x)ldx <e.
UK

In what follows we will make use of the absolute continuity of the
integral with respect to measure.

(3.5) THEOREM [27]. Let w: U — R* be an integrable function. Then for
every number ¢ > O there exists a number 6 > 0 such that if A is a measurable
subset of U with the Lebesgue measure u(A) <o then j'lw(x)l dx <e.

A

A subset X of the space .#!(U; RY) is called integrably bounded if there
exists a function me %! (U; R) such that for every we X, |w(x)| < m(x) for
each xeU.

(3.6) PROPOSITION. Any integrably bounded subset of 2' (U; R is weakly
relatively compact.

Proof. Let us notice that every function we &' (U; R*) has the form w
=(wy, ..., W), where w,e ' (U;RY), (i=1,...,k). Let =n: LY (U;R¥Y
- " (U;RY,(i=1,...,k), be a linear continuous mapping given by the
following condition:

m(w)=(0,...,w,0,...,0) is the element whose i-th component is w;,
and all other components are zero.

Moreover, let T;: Im n; —» %' (U R') be an isomorphism such that T,om,(w)
=w;(i=1,...,k) and let Y be an integrably bounded subset of .¥!(U; R¥.

We can see that the image T,ox;(Y) of Y under Ton is a bounded
subset of &!(U; R!) and, moreover, in virtue of (3.5), satisfies conditions
(ii)~(iii) of (3.4). Therefore, by the Dunford—Pettis Theorem, the set T;om;(Y),
i=1,2,...,k is relatively weakly compact in £!(U;R'). Since Y
cn (Y)+...+n(Y), it follows from (2.1) that Y is relatively weakly
compact in £ (U; RY).

The proof is complete.

4. Compact sets in the space of continuous functions. Let U be a bounded
open domain in R" and let (C(U; R¥),|‘|,) be the Banach space of all
continuous mappings from U into R* with the sup norm, ||o.
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The following theorem gives a characterization of compactness in
C(U; RY.
(4.1) (ArRzELA—AscoLl THEOREM, [28]) A set X in C(U; RY is relatively
compact if and only if the following two conditions are satisfied:
(i) the set X is bounded in C(U; R¥);
(i) for every number & > O there exists a number 6 > 0 such that
sup sup {u(x)—u(X)|: x, XeU and |x—X <d} <e.

ueX

From (3.5) and (4.1) we obtain the following two facts.

(4.2) ProrosiTioN. Let [0,a] be a compact real interval, let
T #'((0, a); R¥)— C ([0, a]; R¥) be a linear continuous mapping given by

T(w)(t) = [ w(t)dt for each te[0, a]

O ey ™

and let Y be an integrably bounded subset of #1((0, a); R¥). Then the image
T(Y) of Y under T is a relatively compact subset of C([0, a]; RY.

(4.3) ProposiTION. Let 4 = [0, a]x [0, a], let T: ¥ *(4; R - C(4; R
be a linear continuous mapping given by

T(w)(s, t _Hw(t nydtdy  for each s, te[0, a]
00

and let Y be an integrably bounded subset of & *(A; R*). Then the image T(Y)
of Y under T is a relatively compact subset of C(4; R¥).

5. Basic integral and differential inequalities. A function f: [0, a] —» R! is
called absolutely continuous provided there exists an integrable function
g: [0, a] = R! such that

f({t =70+ _'fg(r)dr for every te[0, a].
0

Note that the absolutely continuous function f: [0, a] — R' is differenti-

able almost everywhere (written a.e.) on [0, a] an Z;f =g.

Let x:[0,a]-R* be a function of the form x(t)
= (x1(8), x2(8), ..., %, (1)) for each te[0,a], where x; [0,a]—R! (i
=1,2,..., k). The function x: [0, a] — R* is called absolutely continuous
provided that for every i=1,2,...,k x;: [0,a] > R! is absolutely
continuous.

In what follows for any absolutely continuous function x: [0, a]
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— RY x =(x,, x5, ..., x,), and for an integrable function y: [0, a] = R, y
= (15 Y2, ---» ¥i)» We will use the following notation:

v (4% dx;
X' = ( I o, ..., ?(r)) for almost every t€[0, a]

and

}y(t)dr = (j' y, () d, ..., j'y,,(t)dr) for each te[0, d].
0 0 1}

Finally, by R, we will denote the set of all non-negative real numbers.

(5.1) (GRONWALL INEQUALITY, [47]). Ler p: [0, a] = R, be a continuous
Junction and let q: [0, a] - R, be an integrable function. If there exists a non-

negative real number M such that
t
p)S M+ I q(t)-p(r)drt  for every te[0, a],
0

then
p(t) S M-exp[[gq(r)dr] for every 1[0, a].
4]

From (5.1) we obtain the following
(5.2) ProprostTioN. Let g: [0, a]l » R, be an integrable function and let
x: [0, a] — R* be an absolutely continuous function such that ‘

[x'(0) < q(t)-|x(f)] ae. on [0, a],

x(tg) =0 for some t3€[0, a].

Then x(t) =0 for every t€[0, a].
(5.3) (Lasota, Olech; [64]). Let q: [0, a]l - R, be an integrable function

such that | q(t)dt <m/2, let t,1,, ..., t; be real numbers such that 0 <t,

0
<ty <..<t,<a and let x: [0,a] = R* x =(x,, X5, ..., X;) be an abso-

lutely continuous function satisfying the system
IX'(0] < g(r):|x(t) ae. on [0,a],
x(t)=0 fori=1,2,..., k.

Then x(t)=0 for every te[0, a].
(5.4) (Kasprzyk, Myjak; [54]). Let i be a positive real number, let
g: [0, al » R, be an integrable function such that

a

famar<y

0

/n?+log? A
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and let x: [0, a]l > R* be an absolutely continuous function such that
XN <q()|x@) ae on [0,ad],
x(Q)+ A x(a) =

Then x(1) = 0 for every te[0, a].

The following fact is well known; see for instance, [89].

(5.5) Let q: 4 =R, be an integrable function and let u: 4 —>R¥ be a
continuous function such that the derivative u,, is an integrable function and

|ty (%, Y < g(x, y)-lu(x, )| ae on 4,
u(x,0) =0 and u(0,y)=0 for all x, ye[0, a].
Then u(x, y) =0 for every (x, y)ed.

II. Multi-valued mappings

In this chapter we present the well-known basic properties of multi-
valued completely continuous mappings and the basic properties of the
Leray-Schauder degree for convex-valued vector fields. Moreover, we specify
some classes of multi-valued mappings from [0, a] x R" into R¥, for which
there exist convex-valued weakly compact selectors.

We also give the definition and basic properties of L—compact (L-
completely continuous) multi-valued mappings which play a significant role
in the application of the Leray-Schauder degree to boundary value problems.

In what follows E, and E, will denote two Banach spaces and X c E,
will denote a closed non-empty subset of E;.

1. Upper semi-continuous, compact and weakly compact mappings. Let
: X - E, be a multi-valued mapping. For any A4 c X, the set ¢(A)
U @(x) is called the image of A under . In particular, Im ¢ denotes the

1mage ©(X) of X under ¢ and is called the image of ¢. For any B < E, the
set ¢~ (B) = {xeX: p(x) = B} is called a counter image of B under ¢.

In what follows the symbols ¢, y, y, &, ¥, F, H will be reserved for
multi-valued mappings; singe-valued mappings will be denoted by
fig. b I,mp,q L T

A multi-valued mapping ¢: X - E, is called upper semi-continuous
(us.c) provided the following two conditions are satisfied:

(1) @(x) is compact for each xe X,

(ii) for each open set U = E, the counter-image ¢~ ! (U) of U under ¢ is
an open subset in X,
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It is clear now (see for instance [71]) that a convex-valued mapping
¢: X = E; is us.c. iff for each point xe X and for each open convex subset
U of E, containing ¢(x), there exists an open ball B, < E,, with the centre
in x, such that ¢(B,nX) c U. )

In what follows we will always consider multi-valued mappings with
compact values.

The following facts are well known (see, for instance, [37, 71]

(1.1) Let ¢: X - E, be a us.c. multi-valued mapping. Then:

(i) the graph
Iy = {(x, y)eX xE;: yeo(x)}

is a closed subset of X xE,,

(ii) if A is a compact subset of X, then the image @(A) of A under ¢ is
compact.

(1.2) Let ¢: X - E, be a multi-valued mapping such that for every
bounded subset B = X, @(B) is a compact set. Then ¢ is a us.c. mapping iff
the graph I, is closed subset of X xE,.

A us.c. multi-valued mapping ¢: X — E, is called compact provided the
image Im ¢ of ¢ is a relatively compact subset of E,.

A us.c. multi-valued mapping ¢: X — E, is called completely continuous
provided for every bounded subset B — X the image ¢(B) of B under ¢ is a
relatively compact subset of E,.

Let E be a Banach space and let ¢: X - E, and y: E; > E be two
multi-valued mappings. Then the composition yo@: X —E of ¢ and V¥ is
defined by Yo (x) =y (p(x) for all xeX.

We will need the following properties of the completely continuous
mappings.

(1.3) Let ¢: X > E, and y: E, - E be two us.c. mappings. If ¢ or \y is a
completely continuous mapping, then the composition Yoo of ¢ and Y is
completely continuous.

(14) Let ¢: X = E, and y: X - E, be two completely continuous map-
pings. Then the mapping (p+y): X — E, given by

(@+¥)(x) = {y+2: yeo(x) and zey (x),

is completely continuous.

(1.5) Let ©0: X — E, be a completely continuous multi-valued mapping and
let m: X > R' be a continuous single-valued mapping. Then the mapping
m-@p: X —» E, given by

(m-@)(x) = {m(x) y: yep(x)]

is completely continuous.
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The above facts (1.3)—(1.5) lor compact multi-valued mappings are well
known (see, for instance, [37, 71, 91]), whereas for completely continuous
mappings they are an immediate consequence of the definition of completely
continuous mappings.

A multi-valued mapping ¢: X = E, is called weakly upper semi-
continuous (w-u.s.c.) provided for all sequences {x,} = X and {y,} = E, the
conditions |x,} — X, (¥, =y and y,e@(x,), for every n, imply yep(x).

(1.6) DerFiNTION. Let @: X — E, be a w-u.s.c. multi-valued mapping,.

(i) The mapping ¢ is called weakly compact provided ¢(X) is a rela-
tively weakly compact subset of E,.

(ii) The mapping ¢ is called weakly completely continuous provided that,
for every bounded subset B of X, ¢ (B) is a relatively weakly compact subset
of E,.

The following fact is a consequence of the above definition.

(1.7.) ProrosiTioN. Let ¢: X — E, be a weakly completely continuous
multi-valued mapping and let ! E, » E be a continuous linear mapping from
E, into a space E. Then the graph Iy, of the mapping Togp: X ~E is a
closed subset of X xE.

Now, by (1.2) we obtain

(1.8) ProrosiTiON. Let ¢: X — E, be a weakly compact multi-valued
mapping and let T: E, ~E be a linear continuous mapping from E, into a

space E such that Im To¢ is a compact subset of E. Then the composition
Top: X—>E of ¢ and T is compact.

2. L-compact mappings. Let dom L be a linear subspace of E; and let
L: dom L— E;, be a linear (not necessarily continuous) mapping such that
Im L=E, and Ker L is a finite dimensional space.

We will need the following algebraic facts.

(2.1) ProrosiTiON [34]. Let the mapping L: dom L — E, be as above.
Then:

(21.1)  There exists a continuous linear projection P: E, —»E, such that
Im P = Ker L.

(212)  If Py, P,: Ey —E, are two linear projections onto Ker L, then for
each se[0, 1] the mapping s-Py+(1—5) P, is also a linear projec-
tion from E, onto Ker L.

(2.1.3)  With a linear projection P: E; — E; onto Ker L there corresponds
a right inverse Tp: E; — E| given as follows

Te(y)=x iff P(x)=0 and L(x) = y.

(2.14)  Let Py, P,: E\ > E, be two linear projections onto Ker L and let
P(s)=s-P,+(1—s) P, for se[0, 1].



2. L-compact mappings 15

Then

(1) Tp, 0 L(x) = x—P(x) for each xedom L,

(ii) To,(») = Tp, (y)— P20 Tp, () for each yeE,,

(i) To =5 Tp, +{1=9) " Tp,.

(2.2) DerinmTiON ([74], [91]). Let the mapping L: dom L— E, be as
above, let T: E; — E, be a right inverse to L and let X be a closed subset
of E,.

(i) A convex-valued mapping ¢: X - E, is called L-compact (L-
completely continuous) provided the composition To¢p: X - E, of ¢ and T
is a compact (a completely continuous) mapping.

(if) A convex-valued mapping ¢: X — E, is called L-bounded provided
the image Im To@ of Tog is a bounded subset of E,.

It follows from (2.1.4) and (1.3)1.4) that the above definition does not
depend upon the choice of the right inverse T.

From the above definition we obtain

(2.3) ProrostTion. If f, g: X = R' are two single-valued mappings and
@, ¥: X = E, are two L-compact (L-completely continuous) mappings, then the
mapping (f-o+g-Y¥). X = E, is also L-compact (L-completely continuous).

The following fact immediately follows from (2.1.4 (i)).

(24) ProrposiTioN. Let ¢: X - E, be an L-completely continuous map-
ping, let P. E; — E, be a linear continuous projection onto Ker L and let
T E, »E, be a right inverse to L such that Im PoT = 0. Then L(x)€ ¢ (x)
iff the point xedom L is a fixed point of the convex-valued completely
continuous mapping

(P+Tog): X -E,.

(2.5) THEOREM. Let X be a closed subset of E, and let ¢: X — E, be an
L-compact mapping. Then there exists an L-compact mapping ¢: E, - E,
such that

P(x) =@(x) for every xeX and Im § < conv ¢(X).
Proof. Let us put, for every yeE,\ X,
e(y, X) =inf{lly—x||: xeX].
Let r: E;\X —- R, be a real function satisfying

O<r(y)<io(y,X) [lor every yeE;\X

and let B,(y) be an open ball with centre y and radius r(y).
Since the Banach space E, is paracompact, there exists a locally finite
refinement {Q,},4 of E; \X such that:

for every ae A there exists a point ye E;\ X such that Q, = B,(y).



16 1I. Multi-valued mappings

Let us define the functions ¢, E,\X - R, and p,: E;\X —[0, 1], for a e 4,
by the following formulas:

_ 0 if X¢Qv
9« (x) = o(x, 8Q,) il xeQ, (8Q, denotes the boundary of Q, in E,)

and

pa(x _qz [Z qﬂ ] 1‘

BeA

Since [Q,),e4 is locally finite, each p, is correctly defined. Now, for every
a€A let us choose a couple of the pomnts y,eQ, and x,e€X such that
[ya— Xl <2-2(ya, X). Define @: E, —E; by

- o(x) if xeX,

¢(x) = . .
Z pa(x)'(p(xa) if xEEl \X
aed
We see that Im @ = conv ¢(X) and therefore, for a right inverse T E, — E,
to L, To@(E,) is a compact subset of E;. We will show that To$: E; - E,
is a us.c. mapping.

1° Let ueE,\\ X and let lQ,,l, .. Qa } be a finite family of all sets from

{Qq}uea> Containing the point u. Then for every xe X we have

(+) x| €9-llu=xl for i=1,2...n
In fact,
”x_xﬂ‘” s ”x_yai“ +“ydi_x¢i“ < 3 .”x_yll‘”
< 3-[llx—ull +lu—ya [T < 9-llx—ull,
because for i =1, 2, ..., n there exists a y,e E; \ X such that @, < B,(y,) and
therefore

llu =yl < 2r(y) < 2[e (i, X)~r ()] < 201y — Xl —=ly;—ull] < 2|Ix—ull.
2° Let xe X and let U < E, be an open convex set containing T 0 ¢ (x).

Since Tog is a convex-valued us.c. mapping on X, there exists a ball B, (x)
such that To ¢ [B,(x)n X] < U. Hence, by (*), we get

To@(B,(x))cU for n=4r.

3° On the other hand, if xeE;\X, then there exists an open neigh-
bourhood U, < E;\ X of x, such that only a finite number of sets Q,, a€ A,
convers U,. By (2.3) the mapping y: U, — E,, given by y(y) = @(y) for
yeU,, is Lcompact. Therefore, for the point x and a convex set U c E,
containing To@(x), there exists a ball B,(x)c E;\X such that
To@(B,(x) = U.

The proof is completed.
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3. Carathéodory conditions for convex-valned mappings. By .4(R") we will
denote the family of all non-empty, compact subsets of the n-dimensional
Euclidean space R". For two sets A, Be #(R") we will denote by d(A, B) the
Hausdorff distance between A4 and B. Recall that (#(R"), d) is a metric space.
In particular, we put [A] = d(4, {0}).

Let Ae A(R", let F: AxR' — R* be a multi-valued mapping and let
(x, u) be a point in A xR". By F(x, -) we will denote a multi-valued mapping
F.: R" = R* given by F (v) = F(x, v) for each veR’ and by F(-, u) we will
denote a multi-valued mapping F,: 4 — R¥ given by F,(y) = F(y, u) for each
y€eA.

(3.1) DeriniTION. Let A = #(R"). A multi-valued mapping H: 4 —» R" is
called measurable provided that, for every open set U < R¥ the set
{xeR"mA: H(x)nU # @} is Lebesgue measurable.

(3.2) DerFiniTiON. Let A <« #(R"). We say that a convex-valued mapping
F: AxR'— R* satisfies the Carathéodory conditions if:

(c,) for each ueR' the mapping F(-, u) is measurable;
(c;) for each xeA the mapping F(x, -) is us.c.
The following two facts are well known (see, for instance, [18], [84]).

(3.3) ProrosITION. Let A = #A(R") and let a multi-valued mapping H: A
— R be measurable. Then there exists a measurable single-valued mapping
h: A > R* such that h(x)e H(x) a.e. on A.

(3.4) ProrosiTioN. Let A < A(R"), let u: A= R’ be a single-vulued
continuous mapping and let F: AxR' — R* be a convex-valued mapping sat-
isfving the Carathéodory conditions (comp. (3.2)). Then the convex-valued
mapping H: A — R* given by

H(x) = F(x, u(x)} for each xe A

is measurable.
The following fact is fundamental for applications.

(3.5) ProposiTiON [62, 92]. Let U < R" be a bounded open domain and let
a convex-valued mapping F: U x R' — R* satisfy the following:

(i) F satisfies the Carathéodory conditions (comp. (3.2)),

(ii) for every bounded domain B < R' there exists a function
mpe £ P(B; RY) such that

[F(x, u) € mg(x) Jor all xeO and ueB.
Then the mapping @p: C(U; R)— £ 7(U; R*) given by
(3.5.1)  opu) = iwe#?(U; RY: wix)eF(x, u(x)) ae. on U)

is weakly completely continuous. 3} U

2 - Dissertationes Mathematicae CCXXI1X
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(3.6) ProrosITION. Let U = R" be a bounded open domain, let F: U x R
— R* be a convex-valued mapping satisfying conditions (3.5) (if(ii) and let
@r: C(U; R = £ ?(U; R be a convex-valued mapping given in (3.5.1) for F.
Assume moreover that T;: E, » C(U; R) and T,: £7(U; R > E, are two
linear continuous mappings. Then, if for each bounded subset Y = C(U; R') the
set T,opp(Y) is a relatively compact subset of E,, T,oproT,: E; = E, is a
completely continuous convex-valued mapping from the space E, into the space
E,.

Proof. It follows from (1.7) that the graph I\re,0r, IS @ closed subset of
E; xE,. On the other hand, by our assumptions, for every bounded set
X c E|, the set T, 0pp0 T; (X) is relatively compact. Therefore, from (1.2) we
obtain (3.6).

Now, in virtue of (1.4.2) and (1.4.3) respectively, the following two facts
are an immediate consequence of (3.6).

(3.7) ProposiTioN. Let F: [0, a] x R — R* be a convex-valued mapping
satisfying the following:

(i) F satisfies the Carathéodory conditions {(comp. (3.2));

(ii) there exist two integrable functions p, q: [0, a] = R, such that

|F(t, x)| < p()+q(t):]x| for all te[0, a] and xeR'.
Assume, moreover, that the convex-valued mapping ¢p: C([0, a]; R
— Z2Y((0, a); R¥) is given in (3.5.1) for F and the linear continuous mapping
T £'((0, a); R¥) - C([0, a]; RY is given by
t
Tw)(t) = [w(s)ds for te[0, al.
(o}
Then the composition Togp: C([0, a]; RY) — C([0, al; R*) of @f and T is
completely continuous.
(3.8) ProrosiTiON. Let 4 =[0, a] x[0, a) and let F: AxR' — R* be a
convex-valued mapping satisfying the following:
(i) F satisfies the Carathéodory conditions (comp. (3.2));

(ii) there exist two integrable functions p, q: 4 — R, such that
[F(x, y, u)l < p(x, Y)+q(x, y):[ul  for all (x, y)ed and ueR'.

Assume, moreover, that the convex-valued mapping @p: C(4; RY)

— 1 (4: RY is given in (3.5.1) for F and the linear continuous mapping
T. £'(4; R*y - C(4; RY is given by

Xy

TWw)(x,y)=| [w(s, Ndsdt for (x,y)ed.

00
Then the composition Togg: C(4; R - C(4; RY) of @r and T is completely
continuous,



4. Convex-valued, weakly compact selectors 19

4. Convex-valued, weakly compact selectors. We start with the following
definition.

(4.1) DEFINITION. Let U < R’ be a bounded open domain. We say that a
multi-valued mapping F: U x R* — R" admits a convex-valued, weakly com-
pact selector provided that for every compact set X < C(U; R¥) there exists a
convex-valued and weakly compact mapping ¢: X — &' (U; R" such that
for each function we X the following inclusion holds

4.1.1) () yep(x)) < F(t, x(1)) for almost every teU.

A multi-valued mapping F: [0, a] x R* — R" is called integrably bounded
if there exists an integrable function m: [0, a] = R, such that

|F(t, X)) < m(t) for all (t, x)e[0, a] x R,

The following fact immediately follows from the construction given by
Antosiewicz and Cellina (see [4], Th. 2, p. 391 and (iHii), p. 392).

(4.2) ProPoSITION. Suppose some nulti-valued integrably bounded mapping
F: [0, a]l x R* — R" satisfies the following conditions:

(i) for every te[0, a], F(t,*) is a continuous mapping from R* into
(A(R", d);

(ii) for every xeRX, F(-, x) is a measurable mapping from [0, a] into R".

Then the mapping F admits a single-valued, weakly compact selector.

The following fact is an immediate consequence of (3.5).

(4.3} ProposITION. Suppose some convex-valued integrably bounded map-
ping F: [0, a] x R* — R" satisfies the following Carathéodory conditions:

(i) for every te[0, a], F(t,*) is a us.c. mapping from R* into R";

(i) for every xeR", F(-, x) is a measurable mapping from [0, a] into R".

Then the mapping F admits a convex-valued, weakly compact selector.

Let us put, for 4e #(R"), xeR* and a real number ¢ > 0,

o(x, A) =inf{|x—)|: yeA] and O,(4)={ueR* o(u, A)<e).

A multi-valued mapping F: [0, a] x R* - R" is called lower semicontin-
uous if for every point (tq, xo)€[0, a] x R* and for every number ¢ > 0 there
exists a number § > 0 such that

Ftg, xo) < O, (F(t, x)) provided [(to, Xo)—(r, )| <.

The following fact immediately follows from the construction given by
Bressan [10] and tojasiewicz (Jr) [70].

(44) ProrosiTioN. If a multi-valued integrably bounded mapping
F: [0, a] xR* > R" is lower semicontinuous, then the mapping F admits
a single-valued, weakly compact selector.
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S. Compact convex-valued vector fields. Let U be an open neighbourhood
of zero in a Banach space E and let dU denote the boundary of U in E. In
what follows we will denote by I the identity mapping on U.

A multi-valued mapping ®: U — E is called a convex-valued vector field
on the set U provided the following two conditions are satisfied:

(i) there exists a compact convex-valued mapping ¢: U — E such that
O=I1-0¢;

(ii) @ (aU) < E\!0}.

Two convex-valued vector fields ®,, ®,: U~ E are called homotopic
(written @, ~ @,), provided there exists a compact convex-valued mapping
¥: [0, 1]x U - E such that the following two conditions are satisfied:

(iii) for every te[0, 1] and xelU, [x—¥(t, x)] = E\{0};

(iv) @, (x) = x—=¥(0, x) and @,(x) =x—¥(1, x) for xeU.

If &: U — E is a convex-valued vector field, there is an integer defined,
called the Leray-Schauder degree of @ on U and written deg(®, U, 0). For
the definition of the Leray-Schauder degree for compact convex-valued
vector fields and for lull statements of the topological results, see [10, 22, 40,
41, 69, 717].

For our purposes we will need the following properties of the topolog-
ical degree deg(®, U, 0).

(5.1) Let & =1—¢ be a convex-valued vector field on U such that
deg(I— @, U, 0) # 0. Then, ¢ has a fixed point.

(5.2) If @, and &, are two convex-valued vector fields on U and &, ~ &,,
then deg(®,, U, 0) =deg(®,, U, 0).

(5.3) If U is a symmetric neighbourhood of the origin, and @ is a convex-
valued vector field on U such that

b(—x) = —P(x) for every xeU,
then deg(®, U, 0) is odd.
(54) Let & =1—¢ be a convex-valued vector field on U and let E, be a

linear subspace of E such that ¢@(U)cE,, then deg(I—o, U,0)
= deg(l‘"PlvFET: U nEla 0)

III. Multi-valued boundary value problems

In this chapter we shall give some applications of the Leray—Schauder
degree to convex-valued boundary value problems.

It will be divided into two parts. The first part is devoted to the notion
and properties of the topological degree of admissible boundary value
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problems. The second part is devoted to the exlstence theorems for admis-
sible boundary value problems,

In what follows we will denote by E; and E, two Banach spaces and by
B < E; an open ball with the centre at the zero point of E, and some
radius r.

1. The degree of the boundary value problem. Let dom L be a linear
subspace of E; and let L: dom L—E, be a linear (not necessarily con-
tinuous) mapping such that Im L=E, and Ker Lis a finite dimensional
space. Moreover, let ¢: E; — E, be a convex-valued mapping and let I: E,
— Ker L be a completely continuous single-valued mapping.

With such a tree of mappings as (L, ¢, /) we associate the following
boundary value problem

L(x)e ¢(x),
I(x) =
which we will call the (L, ¢, ))- problem

Each point xedom L satisfying equations (1.1) is called a solution of
problem (1.1).

(1.2) DeriniTion. The problem (L, ¢, ) is called an admissible boundary
value problem (written A-BVP) provided the mapping ¢: E, - E, is L-
completely ‘continuous.

From (I1.2.2) (i) and (IL.2.4) we obtain the following

(1.3) ProposiTiON. Let (L, ¢, I) be an A-BVP, ler P: E; — E, be a linear
continuous projection onto Ker Land let T' E, - E, be a right inverse to L
such that Im PoT = 0. Then:

(1.1)

(13.1)  for every ball B < E; the mapping VY, ,: B— E; given by
Yien (X) = P(X)+1(x)+ Top(x) for each xeB
is convex-valued and compact,

(13.2) a point xedom L is a solution of the problem (L, ¢, iff
xe(P+1+ Toe)(x).

(1.4) DeFintTION. Let (L, ¢, )) be an A-BVP, let B < E; be an open ball
with the centre at zero such that the problem (L, ¢, ) has no solutions on
the boundary 6B of B and let y,,: B—E; be a convex-valued compact
mapping given in (1.3.1).

The degree D[(L, @, ), B] of the problem (L, ¢, I) we define by putting

D[(L: ®, [)s B] = deg(l_lp(qp.l)’ Ba O)s

where deg(I—¥,, B, 0} denote the Leray-Schauder degree for convex-
valued vector fields.
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(1.5) ProposiTiON. Definition (1.4) does not depend upon the choice of the
linear projection P: E; — E, and the right inverse T' E, - E; to L corres-
ponding to P.

Proof. Let Py, P,: E, —+E, be two linear continuous projections onto
Ker L and let Ty, T;: E, — E, be two right inverses to L such that InP,oT; =0
(i =0, 1). It follows from (I1.2.1.2) that, for every te[0, 1], P, =(1—1): Po+
+t+P, is a continuous linear projection onto Ker L.

Now, let T: E,—E,, te[0,1], be a right inverse to L such that
Im P,oT, =0 and let x: [0, 1]xB—E, be a convex-valued mapping given
by

x(t, x) = P(x)+1(x)+ T;0 p(x),

where B < E, is the ball given in (1.4).

It follows from (I1.2.1.4) (iii) that the mapping y is compact. Moreover,
by (1.3.2), for every xeéB and te[0, 1], x¢x(t, x) because the problem
(L, ¢, ) has no solutions on the boundary éB of B.

Hence, by the homotopy property of the Leray—Schauder degree (comp.
(I1.4.2)), we obtain

D [(L’ @, I)r B] = deg(l_l)”.o.l)v B, 0) (l = 0’ l)a
where

Wiy (x) = Pi(x)+1(x)+ Top(x) for xeB (i=0,1).

The proof is completed.

(1.6) DermniTioN. Two A-BVP’s, (L, ¢o, lo) and (L, ¢,, l,) are called
homotopic on a ball B < E,, written (L, @o, lo) 5 (L, @1, l;), if there exists a
family (L, ¢,, 1), t€[0, 1], of A-BVP's such that the following conditions are
satisfied: :

(i) no point xe(B is a solution of the problem (L, ¢,, ) for any
te[0, 17; ’

(ii) the mapping H: [0, 1]xB—E, given by H(t, x) = ¢,(x) is L-
compact,

(iii) the mapping h: [0, 1]xB—>Ker L given by h(t, x) =L(x) is
compact.

Now we can formulate the basic properties of the degree of an A-BVP.

(1.7) ProposiTiON. Let (L, ¢, ) be an A-BVP and let B< E, be a ball

such that the problem (L, ¢, l) has no solutions on the boundary ¢B of B.
Then:

(17.1)  if D[(L, ¢, ), B] # 0, there exists at least one solution of the prob-
lem (L, @, I);
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(172) if @(—x)=—o@(x) and l(—-x)= —I(x) for every xeB, then
D[(L, ¢, D), B] is odd,

(1.7.3) if two A-BVP’s, (L, ¢, lg) and (L, @, I), are homotopic on a ball
Bc El) then D[(L! Do, lO): B] = D[(Ls (/8 1)3 B]:

(1.74)  if (L, @o.lo) 5 (L, @, D) and ¢@o(x)= 1[0} for every xeB, then
D[(L, ¢, }), B] = deg(la ka1 B~ Ker L, 0).

All these results are consequences of the definition of the degree
D[(L, ¢, ), B] and of the corresponding properties of the Leray-Schauder
degree for convex-valued vector fields (comp. (1L.5.1)}+11.5.4)).

(1.8) ProrosiTiON. Let (L, ¢q, ) and (L, ¢4, ) be two A-BVP’s and let
(L, @, 1), te[0, 1], be a family of problems (non-necessarily A-BVP's) such
that for i =0, 1, @;(x) = @(x) for each xeE,. Assume, moreover, that there
exists a ball B < E| such that no problem (L, ¢, 1), t€[0, 1], hus solutions on
the boundary ¢B of B. Then:

(1.8.1)  D[L, ¢o, k), B1 = D[(L, ¢,, ), B] for every te[0, 1];
(1.8.2) if the mapping h: [0, 1]xB = E, given by
h(t, x) = L(x) for every te[0, 1] and xeB

is compact, then D[(L’ Pos IO)) B] =D [(La Do, 11)7 B]

Proof. To prove (1.8.1) we assume, for instance, t = 0. Since the set
@(x) is convex and ¢,(x) = @(x) for every xeB,i=0, 1, then s-@q(x)+
+(1—5)- ¢, (x) = ¢(x) for every se[0, 1] and xeB.

Now, it follows from our assumption that the A-BVP (L, s o+
+(1—5) ¢, ly) does not have a solution on the boundary 7B of B for any
se[0, 1]; so (L, ¢o, ) 5 (L, @1, lp). Therefore, from (1.7.3) we obtain (1.8.1).

By analogy, we see that in the case of (1.8.2), for re[0, 1] the A-BVP
(L, ¢o, ;) does not have a solution on the boundary B of B. Therefore
(L, Qo IO) B’ (La Po Il)

The proof is complete.

2. Existence theorems. In this section we will study sufficient conditions,
which asssure the existence of the solutions of admissible boundary value
problems.

(2.1) THEOREM (conditions of Rothe’s type). Let (L, ¢, ) be an A-BVP.
Assume, moreover, that there exists a ball B = E; with the centre at zero, a
convex set K = E,, 0e¢K and a real number r > 0, such that the following
conditions are satisfied:

() if xedBndom L, x¢Ker L and I(x)=0, rthen L(x)¢K and
p(x) = K;
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(i) if xeBnKer L, then ||I(x)|| = r;

(iii) deg (kg ke, BN Ker L,0) # 0.

Then, the problem (L, @, ]) has at least one solution.

Proof. Let us define convex-valued L-completely continuous mappings
¢,: E; > E,.1e[0, 1], by putting

@ (x)=t-p(x) for every xcE,.

By (i)(ii), the problem (L, ¢,, ) does not have a solution on the boundary of
B for any te[0, 1]. Therefore,

(L: ®, I) 'B’ (L’ Pos I)

Now, in view of assumption (iii) and (1.7.4), (1.7.1) we obtain (2.1). The proof
is complete.

(2.2) TueoreM (conditions of Lasota and Opial's type). Let (L, ¢, ),
(L, @y, 1,) and (L, @,, |,) be three A-BVP’s such that the following conditions
are satisfied:

(i) ¢ (r'x)=r-o,(x) and I, (r-x) =r-1(x) for all xeE, and reR;
(i) x =0 is a unique solution of the problem (L, ¢, !,);
(iii) the mapping @, is L-bounded and l, is bounded;
(iv) @(x) = @, (X)+¢@,(x) and I(x) =1 (x)+1,(x) for x€E;.
Then:
(2.2.1)  the set of all solutions of the problem (L, ¢+ @, |, +1;) is bounded,
(2.22)  the problem (L, ¢, l,+1,) has at least one solution.

Proof. Let us consider the following two families of A-BVP’s
(L, oy +t-@y, i +t-1) and (L, t-(¢1+@)+(1=10)-9, l;+1;), where
tef0, 1].

First, we will show that there exists an open ball B < E; containing the
set of all solutions of the problems

(L’ ‘pl+t'¢2, 11+t'12) Wlth ‘E[O, 1].

Suppose that the above statement is not true, ie. there exist sequences
X,y < E; and [1,} [0, 1] such that lLim||x,)|=c and each point
n

X, (n=1,2,..) is a solution of the problem

(Ls ? +t,,'(P2, ll +tn.12)'

Let us put |[x,|| =r,.
By assumption (i) and (iii) we have:

L (Xorp)+tfry la(x) =0 and  lim t,/r,-1,(x,) = 0.
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Moreover, if P: E;, = E, is a continuous linear projection onto Ker L and
T E, - E, is a right inverse to Lsuch that Im Po T =0, then by (1.3.2) and
by assumptions (i), (iii) we get

XofTy = P(xn/rn)+ T(yw) +ta/ra T(Zn)

for some y,€ @, (x,/r,) and z,€¢,(x,), and

lim t/r,  T(z,) =0.

On account of appropriate assumptions the sequence {x,/r,} contains a
subsequence {u;} = {X,;/rn;) convergent to a point ueE,. Since the map-
ping Tog, is usc, so above equalities imply

ue(P+Toe)(u)

and
I(wp=0, where |lul =1.

Thus, it follows from (1.3.2) that the point u # 0 is a solution of the problem
(L, ¢,, l;), which contradicts the assumption (ii).

Therefore, there exists an open ball B = E; containing the set of all
solutions of the problems

(L, (,01+t'(p2, ’1+t"z) for tE[O, l].
So we obtain (2.2.1). Moreover,

(L, @1, 1)) 5 (L, 1+ @2, 11 +15).
Now, in virtue of assumption (iv) we have

t (@ +@2)(x)+(1=1) 9 (x) © @5 (x) + 2 (x)
and therefore

(L) ® +¢2’ ll +11) ‘E (L! @, ll +12)

Hence, by (1.7.3)1.7.2), the degree D[(L, ¢, |, +15), B] is odd; so by (1.7.1)
we obtain (1.2.2).

The proof is complete.

(2.3) Tueorem. Let (L, ¢, ) be an A-BVP and let (L, ¢, l) be a problem
(not necessarily an A-BVP) such that the following conditions are satisfied:

(i) @(x) < @, (x) and Oc¢,(x) for all xeE,;

(i) there exists a ball B < E, containing the set of all solutions of the
problem (L, ¢y, I);

(iii) deg()gnker B Ker L, 0) #0.

Then, the problem (L, @, l) has at least one solution.
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Proof. By applying (1.8.1) to the problems (L, ¢, /) and (L, @, ) with
@olx) = (0] for every xe E;, we obtain

D[(L. ¢,, ), Bl = D[(L, ¢o, }), B].
Now, in virtue of (1.74), D[(L, @o, ), B] = deg{lskers B Ker L, 0).
Hence, from (1.7.1) and (iii) we obtain (2.3).

(24) THEOREM (conditions of Browder’s type). Let (L, @, I) be an A-BVP,
let P: E, >Ker L be a linear continuous projection onto Ker L and let
(L, ¢,. ) be a problem (non-necessarily an A-BVP) such that the following
conditions are satisfied:

(i) (x) c @, (x) and 0e@,(x) for all xeEy;

(ii) there exists a real number r > Q such that for each point xeE, and
constant mapping c,: E; — Ker Lgiven by c,(y) = P(x) for every yeE,, there
exists an integer n = n(x) such that

(cx+Tpo@)"(x) c {uekEy: |lull <r};

(ifi) deg(hg ke, BN Ker L, 0) 0, where B = (uek;: |jul| <r}.

Then the problem (L, @, 1) has at least one solution.

Proof. It follows from (1.3.2) that each solution xedom L of the
problem (L, ¢,, /) satisfies the following

xe(P+Tp0,)(x).

Therefore, by (ii) the set all solutions of the problem (L, ¢,, ) is contained in
the ball B. Now, in virtue of (2.3) we obtain (2.4). The proof is complete.

Remark. We can consider the boundary value problems with non-
convex multi-valued mapping ¢: E, » E, (comp. (1.1)}. In this case it is
required that the composition Tog: E, — E, of ¢ and a right inverse " E,
— £, to the linear mapping L: dom L — E, should be admissible multi-
valued mapping; see Goérniewicz [37] and Bryszewski [14].

IV. Boundary value problems for ordinary
differential equations

Let us denote by (C*~, ||, ) the Banach space of all C" !-mappings
of the form x: [0, a] - R" W1th
Xlg—y = max {|xfo, |x'o, ..., 1x*" Do}

In this chapter we will study the existence questions for the following
boundary value problem

xW(yeF(t, x(1), x'(t), ..., x* (1)) ae. on [0, al,
[(x) =

(1)



1. Admissible boundary value problems 27

where F: [0, a] x R™ — R" admits a convex-valued, weakly compact selector
(comp. (IL4.1)) and I: C*~!' - R" is a completely continuous single-valued
mapping.

A C*~'-mapping x: [0, a] —» R" with the absolutely continuous deriva-
tive x*~1: [0, a] » R" satisfying equations (1), is called a solution of
problem (1).

In what follows the problem (1), where F and | are two mappings as
above, will be called the (F, ))-problem.

Moreover, in this chapter, we will denote by dom L= C*"! a linear
subspace of all functions from C*~! whose (k—1)th derivative is absolutely
continuous and by L: dom L— ¢!, where &' = (0, ,R"), a differ-
ential operator given by putting

L(x)(t) = x®¥(t) ae. on (0, a).

1. Admissible boundary value problems associated with problem (1). First,
we introduce some mappings. Let t be a real number from [0, a] and let
P: C*¥! > C*"! be a linear continuous projection onto Ker L given by
putting

P.(x)(t) = x(0)+x () t+...+x*" V()  for te[0, a].

Moreover, let us consider for each j =0, 1, ..., k—1 the following operators:

Ty L*'>C, C=C°% Ty =][y@s)ds for every te[0, a]
and
T: C~' >, T =[y(s)ds forevery te[0,a]landj=1,...,k—1.

T

We define an operator T,: &' —C*"! by putting
T =T_,0...0ToT,.

It is easy to see that T, is a right inverse to L such that Im P,o T, =0.
Now we will prove the following lemma.
(1.1) Let F,, F,, F3: [0, a]xR™ — R" be three multi-valued mappings
and let I: C¥"!' 5 R"™ be a single-valued completely continuous mapping.
Assume, moreover, that the following conditions are satisfied:

() F5 is convex-valued and integrably bounded;
(i) F, and F, admits a convex-valued, weakly compact selector and

Fi(t,z) = F4(t,2) for (t,2)e[0,a]lxR™, j=1, 2
(iii) there exists a point 1€[0, a]_such that the set
{(x(@), x'(t), ..., x* " V())eR™ : x is a solution of (F3, 1)}

is bounded in R™*.
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Then, there exist convex-valued L-compact mappings ¢, ¢,: C*~! - ¥!
and an open ball B « C*~1, with the centre at the zero point, such that:

(1.1.1)  the set A, of all solutions of the problem (Fs, ) is contained in B,

(112)  if a point xeB is a solution of the A-BVP (L, @;, ), j =1, 2, then the
point x is also a solution of the problem (F, I),
(1.13) (L, @1, ) 5 (L, @2, D),

(1.14) if m: [0, a] = R, is an integrable function such that |F,(t, z)| < m(t)
for all (t, 2)e[0, a] xR™, then, for every yelmo, (j=1,2),
[y (6)] € m(t) for every te[0, a].

Proof. Let y: C"! —» #! be defined by
Y (x) = {ye L p(t)eFs(t, x(2), X' (1), ..., x* V(1)) ae. on [0, a]}.

Since each solution of the problem (F;, ) has the form x = P,(x)+ T,(y) for
some y ey (x), then by (i) and (iii) the set 4, of all solutions of the problem
(F3, !) is bounded. Let B = C*~! be an open ball with the centre at zero such
that

conv(Im Toy)+ P(A4,) < B.

It is obvious that A, = B, and so we have (1.1.1).

By (14.2) we can see that the set

X = conv(ImT, o)+ P,(B)

is compact.

Let D: C*!' - C([0, a]; R™") be a linear continuous mapping given by
the formula

D(x)(t) = (x(2), x'(2), ..., xX*" V(1))  for every te[0, a]

and let y;: D(X)— &' be a convex-valued, weakly compact selector for
F;(i=12), ie.
(»)  y®): yey;(0)} = Fyft, x(0), x' (@), ..., x* (@) for xeX.

Since by (14.2) the set Im Toon//j is compact, so in virtue of (II.1.8) the
mapping Tooy;: D(X)— C*™' is compact. Hence y;: D(X) —» %! (j =1,2
are two convex-valued L-compact mappings.
. It follows from (I1.2.5) that there exist convex-valued L-compact
mappmgs
;0 C([0, a); R™) > £ (j=1,2)
such that

(»)  ¥@ =) for zeD(X) and Im §; < conv Im y,.
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Now we define the mapping ¢;: C¥~' - &' (j =1, 2) by putting
@;(x) =;(D(x)) for every xeC*~1,

Note that

(%%x) Img,cconvimy (=1,2).

Next, we will be interested in some properties of the mappings ¢;(j =1, 2).
1° Let a point xe B be a solution of the A-BVP (L, ¢, ), j =1, 2. Then

xe(P.+Top)(x) and I(x)=0.

Since by (#*x) xeP.(x)+convIm T,0y, we have xeX. Now, by (**), we
get ¢;(x) = ¥, (D ().

Hence, the point x is a solution of the problem (F,, I),j=1,2 The
proof (1.1.2) is complete.

2° Let us consider the following family of A-BVP’s:

(L, t o, +(1—=0)-¢,, 1), te[0,1].
If a point xe B is a solution of the problem (L, t @, +(1—0" ¢, ) for some
te[0, 1], then xe(P,+t-T,op,+(1—1)' T,0@,)(x) and so by (**x) xeX.
Now, by conditions (ii) and ( **), we can see that the point x is a solution
of the problem (Fj, ]} and therefore xeB. Hence, (L, ¢, ) 3 (L, ¢, ). The
proof (1.1.3) is complete.

3* Since Im ¢; < conv Im y;, assertion (1.1.4) is a simple consequence of
assumption (ii). The proof is complete.

2. Existence theorems. We start with the following

(2.1) THEOREM. Suppose some multi-valued mappings F,, F,: [0, a] x R"*
—R" and single-valued mappings 1,, l: C¥~! — R"™ satisfy the following
conditions:

(i) F, is an integrably bounded mapping which admits a convex-valued,
weakly compact selector;

(i) F,(t, z) = |0} for every (t, z)€[0, a] x R™*;

(iii) [, is a linear continuous mapping;

(iv) 1, is-a bounded and continuous mapping;

(v) problem (Fy, l,) has at most one solution.

Then problem (F, I, +1,) has at least one solution.

Proof. Let m: [0,a] >R, be an integrable function such that
[Fy(t, 2)] < m(t) for every (t,z)e[0,a]xR"™ and let y: C*"' > ! be a
convex-valued, weakly compact mapping given by

W(x)={ye?: |y(t) <m() ae.on [0,a])] for xeC+ !,
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It is easy to see that the mapping ¢ is L-bounded, ie., T,oy: C*~ ' — Ck~!
is bounded.

Now, in virtue of (I11.2.2.1) to the problems (L, ¥, /;+/5) and (L, y,. I,)
with ¢, (x) = {0) for every xe C*™!, the set Ay of all solutions of the problem
(L, y, l;+1,) is bounded in C*~!. We can see that the set of all solutions of
the problem (F,, l;+/,), where Fi(t, z)= {ueR" |u <m(t)] for every
(t. 2)e[0, a] x R™*, is equal to the set A,.

Therefore, in virtue of (1.1) applied to the problems (F,, /; +1/,) and
(Fy. Iy +1;), there exist a ball Bc C*! and a convex-valued L-compact
mapping ¢: C*~! = %! such that: Ay = B, ¢(x) = Y(x) for every xeCk™!
and each solution of the A-BVP (L, ¢, |, +1,), belonging to B, is also a
solution of the problem (F,, I, +1,).

Since @ (x) = ¥ (x) for every xeC*~!, the set of all solutions of the
problem (L, ¢, !;+1,) is contained in 4, and so each solution of (L, ¢,
Iy +1,) is a solution of the problem (F,, I, +1,).

Now again, in virtue of (II1.2.2) applied to the A-BVP (L, ¢, [, +
+1,), (L, ¥y, ;) and (L, ¥, I5), there exists at least one solution of (L, ¢,
Iy +1,). The proof is complete.

(2.2) TueOREM. Let F,, F,: [0, a] x R™* — R" be two multi-valued map-
pings and let I: C*=' — R"* be a single-valued completely continuous mapping.
Assume, moreover, that the following conditions are satisfied:

(i) F; admits a convex-valued, weakly compact selector;

(i) F, is a convex-valued integrably bounded mapping such that

OeF,(t,z) and Fy(t,2) = Fy(t,z) for every (t, 2);

(iii) there exists a point te[0, a] such thar the set {(x(t), x'(1), ...
o XTU(): x s a solution of (Fy, I} is bounded in R™.

Then:

(22.1)  there exists a ball B = C*~! with the centre at zero containing the set
of all solutions of the problem (F,, |)

(222) if T. C°t S C* 1 s given by
T(.\‘)=a0+a1‘f+...+ak_1'fk_l l:ﬁ‘ 1(x)=(a0, al,-..,ak_l)

and deg (T;,-,, keetr BOYKer L, 0) #£ 0, then problem (Fy, Iy has at least
one solution,
(223) if lis u linear mapping, then the problem (F,, ) has at leust one
solution.
Proof. From (1.1.1) we obtain (2.2.1). Moreover, by (1.1) there exist
convex-valued L-compact mappings

@ 2 C7 1 -
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such that each solution of the A-BVP (L, ¢, 1), belonging to B, is a solution
of the problem (Fy, ), ¢,(x)=1{0} for every xeC* ' and (L, @y, 1)
5 (L, o, 7). Now, in virtue of (II.1.7.4) we have

(%) D[(L, ¢, T), B] = deg(Tp.xerr, B Ker L, 0)

and therefore by (III.1.7.1) we obtain (2.2.2).

If I is a linear mapping, then by equality (*) and (III.1.7.2) the degree
D[(L, ¢, 1, B] is odd and therefore from (IIL.1.7.1) we obtain (2.2.3). The
proof is complete.

3. First order problems. In this section we will assume that a multi-
valued mapping F: [0, a] x R" = R" and two single-valued continuous map-
pings l;, l3: C — R" satisfy the following conditions:

(i) the mapping F admits a convex-valued weakly compact selector;
(ii) there exist two single-valued integrable functions p, g: [0, a] - R,
such that
[F(t, x)| € p(t)+q(t)-|x] for every (¢, x)e[0, a] x R,
(iit) 1, is bounded
(iv) the mapping I, has one of the following form:

(ivy) 1 (x) = x(0) (Cauchy initial condition)
or

(ivy) [ (x) =x(0)+ A x(a) (Floguet boundary condition)
or

(iv3) [1(\) (xy(£1)y .oy X,(0,)) (Nicoletti boundary condition)
where x(*) =(x; ("), ..., x,( ) ty, ..., t,€[0, al, or

(ivy) 1, is a nonlinear completely continuous mapping.

(3.1) ProrosiTiON. Let the mappings F, 1,1, be as above. Assume,
moreover, that the set of all solutions of the system

[x" (1) € (t)+q (t):|x() ae. on [0, a],

LX)+ 1(x) =
is contained in a bull with centre ut zero aund radius r. Then, if a multi-valued
mapping F: [0, a] x R" — R" is given by
F(t, x) Jor |x|
F(t, x-2r/|lx]) for |x]|

(3.1.1)

3.12 F N
1. I, x) =
( ) 1( ’ X) ? 2r’
the set of all solutions of the problem (F, |, +1,) is equal to the set of all
solutions of the problem (F,, 1, +1,).
Proof. Let a point xe C be a solution of the problem (F,, !, +1;). Then,

by assumption (i), we have

|x'(1)] < p()+¢q{t)|x(r) ae on [0, a].
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Thereflore, the point x is a solution of system (3.1.1). Hence, |x]o <7, and so
the point x is a solution of the problem (F, I, +1[;).
The inverse inclusion is obvious. The proof is complete.

(3.2) THEOREM. Let the mappings F, |, and |, be as above. Then, we have:

(3.21)  if I, (x) = x(0), then the problem (F, |, +1,) has at least one solution,

(322 if I;(x)=x(0)+4-x(a) and [ q(s)ds < /n*+log?A, then the prob-
0

lem (F, l,+1,) has at least one solution,

(322 if L(x)=x(0)+A x(a) and [ q(s)ds </n*+log?A, then the prob-
0
blem (F,1,+1;) has at least one solution,

Proof. Let the mapping !, have one of the forms (iv }{iv;). First we
show that the set of all solutions of system (3.1.1) is bounded. For this
purpose let us define two convex-valued mappings ¢,, @;: C — £ by
putting

@ (x) = {yeL": |y < q(1)]x(1)| ae. on (0, a)]
and

02(x) = {ye L' [y(®) < p(t) ae. on (0, a)}.

It follows from (11.3.6) that o,, ¢, are L-completely continuous mappings.
d
Recall that in our case L=E'

In virtue of inequality (1.5.1)+1.5.3), the A-BVP (L, ¢,, /,) with condi-
tion I, has only the zero solution. Therefore, by (II1.2.2.1), the set of all
solutions of the problem (L, ¢, + ¢,, [; + ;) is bounded. Hence, the set of all
solutions of system (3.1.1) is also bounded.

Now, it follows from (3.1) that it is sufficient state the existence of a
solution of the problem (F, I, +1,), where F, is given in (3.1.2) for F. Since
by (2.1) the problem (F,, ! +1,) has at least one solution, the proof is
complete.

Making use of (I1.4.3) we get the following theorem.

(3.3) THEOREM. Suppose that a convex-valued mapping F: [0, a] x R" - R"
satisfies the following conditions:

(iy) for every te[0, al, F(t, ) is a u.s.c. mapping from R" into R™;
(i) for every xe R", F(-, x) is a measurable mapping from [0, a] into R";

(ii) there exist two integrable functions p, q: [0, a] = R, such that

[E(t, 0 < p)+q()-Ix|  for (t, x)€[0, a] x R".
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Then (3.2.1), (3.2.2) and (3.2.3) are true.

Remark. In particular, if [, C - R" is a constant mapping and the
convex-valued mapping F sat‘isﬁes assumptions (i,), (i;) and (ii) of Theorem
(3.3), then:

1° from (3.2.1) we obtain Casting’s [17] and Pli§’s [84] result: there
exists at least one solution of the Cauchy initial value problem (F, I, +1,),

2° from (3.2.3) we obtain Lasota and Opial’s result (see [67], [68]): there
exists at least one solution of the Nicolletti boundary value problem
(F, L +1,).

Making use of (I[.4.2), we obtain the following theorem.

(3.4) THEOREM. Suppose that a multi-valued mapping F: [0, a] x R" = R"
satisfies the following conditions:

(i,) for every tef{0, al, F(t, ) is a continuous mapping from R" into
(#(R", d);

(13) for every xeR", F(+, x) is a measurable mapping from [0, a] into R";

(ii) there exist two integrable functions p, q: [0, a] - R, such that

|F(t, x)| < p(t)+q(t)-|x] for (t, x)e[0, a]xR".

Then, (3.2.1), (3.2.2) and (3.2.3) are true.

Remark. In particular, if an integrably bounded mapping F:
[0, a]l x R" — R" satisfies assumptions (i,}i,) of Theorem (3.4), then, from
(3.2.1) we obtain Filippov’s [32], Antosiewicz and Cellina’s [4], and Kaczyn-
ski and Olech’s [52] result: there exists at least one solution of the Cauchy
initial value problem (F, I,).

Making use of (I.4.4) we obtain the following theorem.

(3.5) THEOREM. Suppose that a muiti-valued mapping F: [0, a] x R"— R"
satisfies the following conditions:

(i) F is lower semicontinuous;

(i) there exist two integrable functions p, q: [0, a]l = R, such that

[F(t, X)) < p()+q()-|xI  for (t, x)e[0, a] xR"

Then, (3.2.1), (3.2.2) and (3.2.3) are true.

Remark. In particular, if a lower continuous mapping F: [0, a] x R"
— R" is integrably bounded, then, from (3.2.1), we obtain Bressan’s [11] and
% ojasiewicz’s (Jr) [70] result: there exists at least one solution of the Cauchy
initial value problem (F, [,).

(3.6) TueoREM. Let F: [0, a] xR" — R" be a multi-valued mapping sat-
isfying assumption (i) and assumption (ii) with some essentially bounded

functions p, q: [0,a] > R,. Let b=esssupp(t),c=esssupgq() and
te{0.a] 1{0,a)

3 — Dissertationes Mathematicae CCXXIX
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let I C — R" be a single-valued completely continuous mapping satisfying the
Jollowing conditions:

(iii;) there exists u point 1€[0, a] such that the set
K = {x(r)eR™ I(x) =0} is bounded in R";
(iii,) there exists an open ball B, = {xeC: |x|o <r, with r>2-|K|+
+(b/e+IK]) - e1X), such that
deg (1g,~xers B, " Ker L, 0) # 0.

Then, problem (F, ) has at least one solution.
Proof. First, let us note that the set of all solutions of the problem

Ix'(0) < p(e)+q(@)|x(1)] ae. on [0, a],
Ix)=0

is contained in the ball B, given in (iii,) (see [89]). By using (3.1) we deduce
that the set of all solutions of the problem (F, J) is equal to the set of all
solutions of the problem (F,, ) with F; given in (3.1.2) for F.

Now we can see that by (2.2.2) the problem (F,, ) has at least one
solution. The proof is complete.

4. Second order problems. We start with the following theorem.

(4.1) TueoreM. Let I, I;: C* —» R" be two continuous and bounded map-
pings and let F: [0, a]x R* —» R" be an integrably bounded mapping which
admits a convex-valued, weakly compact selector. Then, there exists at least
one solution of the following problem

x"(DeF(t, x(t), x'(t)) ae on [0, al,
x(0)=1ly(x) and x(a)=I(x).

Proof. Putting /,(x) =(x(0), x(a)) and I,(x) = (lp(x), I(x)) for every
xeC! and applying (2.1) to the problem (F, I,-1;), we obtain (4.1).

In what follows we will assume that a multi-valued mapping F: [0, a] x
xR?" > R" and a single-valued continuous mapping {: C! — R2" satisfy the
following conditions:

(1) the mapping F admits a convex-valued, weakly compact selector;

(ii) there exist two essentially bounded functions p, q: [0, a] - R,
such that

[F(t, x, ) < p()+q(t)-|x|  for every (¢, x, y)e[0, a] xR" x R™;
(ii]) there are two real numbers M > 0 and t >0 such that

F(t,x,y)c{ueR™ u-x>0} for all te[0, a], |x]>M

and [y] <t (u'x denotes the scalar product of u and x);
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(iv) the mapping ! has the lollowing form:
1(x) = (x(0), x(a)) (Picard boundary condition).

Let us put A =[0, a]x {xeR" |x] > M} x{yeR™ |y| <1}, where the
numbers M and t are given in (iii).

We will need the following

(4.2) ProposiTiON ([89]). Let the functions p, q and the set A be as above,
let Fi: [0, a]xR* — R" be a convex-valued mapping given by

FLt x ,)_{ (ueR": Jul < p()+4(1)-Ix]} for (1, x, J)¢ 4,
1l %, Y fueR™ |u| < p()+q(t)-|xl,u- x>0 U 0] for (¢, x, y)e4
and let the mapping 1 have the form (iv). Then, the set of all solutions of the

problem (Fy, |} is bounded.

(4.3) LemMa. Let the mapping F, be the same as that given in (4.2) and let
B, = C! be an open ball with centre at zero and radius r > M containing the
set of all solutions of the problem (Fy, ). Then, if the multi-valued mapping
F;: [0, a] xR* = R" is given by

F(t, x, y) if Ixl<vr,
F(t,xr/Ix,y) if|xI>r

the set of all solutions of the problem (F, I} is equal to the set of all solutions of
the problem (F,, ]).

4.3.1) Fo(t, x. y) = {

Proof. Let a function xeC' be a solution of the problem (F, /). Since,
by assumptions (ii}-(iii), F (¢, z) = F,(t, z) for (¢, z)e[0, a] xR®", x is a sol-
ution of the problem (F,, /). Since by our assumptions |x|o <r, sO x is a
solution of the problem (F,, ).

Now let a function xeC! be a solution of the problem (F,, ). Then, by
(4.3.1) and by assumption (ii), we can see that x is a solution of the problem
(F,. ) and so |x|g <r. Therefore x is a solution of the problem (F, [). The
proof is complete.

(4.4) THEOREM. Suppose that a multi-valued mapping F: [0, a] x R*" —» R"
and a continuous single-valued mapping lI: C' — R?" satisfy assumptions (iHiv).
Then the problem (F, ) has at least one solution.

Proof. Let F,: [0, a] x R*" —R" be a multi-valued mapping given in

(4.3.1) for F. Then it follows from (4.3) that the set of all solutions of the
problem (F, ) is equal to the set of all solutions of problem (F,, /).

Let us define a convex-valued mapping F,: [0, a] x R*" — R" by

lueR": |ul < p(t)+q(t)-r} for (t, x, )¢ A,

F (t =
16 %, 9) { ‘ueR" |u) < p()+q(t)r,u-x>0}uf0} for (t, x, y)eA4,



36 IV. Boundary value problems for ordinary differential equations

where the real number r is given in (4.3) and the set A is given in (4.2),

It is easy to see that F,(t, x, y) = F,(t, x, y) for every (t, x, y)€[0, a] x
x R"x R" and that by (4.2) the set of all solutions of the problem (F, ) is
bounded.

Now, in virtue of (2.2.3) applied to the problems (F, /) and (F,, I) there
exists at least one solution of the problem (F,, }). The proof is complete.

In particular, making use of (11.4.2), (I.4.3) and (I1.4.4) respectively we
obtain the following theorems, which simply result from (4.4).

(4.5) THEOREM. Suppose that a multi-valued mapping F: [0, a] x R?" — R"
satisfies conditions (ii), (iii) and moreover:

(i;) for every te[0, a], F(t,") is a continuous mapping from R*" into
(#(R"), d);

(i,) for every zeR?*", F(-, z) is a measurable mapping from [0, a] into R".

Then, if a single-valued mapping I: C*' — R?" has the form (iv), the problem
(F, ) has at least one solution.

(4.6) THEOREM. Suppose that a convex-valued mapping F: [0, a] x R*"
— R" satisfies conditions (ii), (i) and moreover:

(i,) for every te[0, a], F(t; ) is an u.s.c. mapping from R?" into R™;

(i,) for every zeR?", F(-, z) is a measurable mapping from [0, a] into R™.

Then, if a single-valued mapping I: C! — R?" has the form (iv), the problem
(F, D) has ar least one solution.

(4.7) TueoREM. Suppose that a multi-valued mapping F: [0, a] x R* - R"
is lower semicontinuous and satisfies conditions (ii}{iii). Then, if a single-valued
mapping I: C* > R*" has the form (iv), the problem (F, ) has at least one
solution.

V. Boundary value problems for some hyperbolic
partial differential equations

In this chapter we will study the existence questions for two boundary
value problems:

1° the multi-valued Darboux problem and
2° the multi-valued problem with nonlinear boundary conditions.
1. Multi-valued Darboux problem. Let 4 be the Cartesian product

[0, a] x[0, a] and let F: 4 x R"— R" be a convex-valued mapping satisfying
the following conditions:
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(i) for each ueR", F(-, u) is a measurable mapping from 4 into R";
(ii) for each (x, y)ed, F(x, y,') is a usc. mapping from R" into R";
(iii) there are two integrable functions p, g: 4 — R, such that

|F(x, y, )| < p(x, Y)+4q(x, y):|u| for each (x, y)ed, ueR".

Let C,([0, a]; R" denote the space of all absolutely continuous func-
tions from [0, a] into R™

For the mapping F and for two finite dimensional continuous bounded
mappings I, T: C(4; R") — C, ([0, a]; R, such that I(u)(0) = T()(0) for every
u C(4; R"), we formulate the following Darboux problem:

Uy, (x, Y)€F(x, y, u(x,y) ae. on 4,
u(©,)=Tw) and u(:, 0)=I(w).
A function u: 4 — R" satisfying the above equations and such that u,,

exists almost everywhere on 4 and u,, is an integrable function is called a
solution of problem (1.1).

(1.1)

(1.2) TuEOREM. Problem (1.1) has at least one solution.

Proof. Let the mapping F, ! and T be as in (1.1) and let Y,, ¥, be two
finite dimensional subspaces of C,([0, a]; R") such that Im/<c Y, and
ImTcy,.

We introduce the following functional spaces:

Y={f®geC(4;R"): feY,,geY, and
(f@g)(x, y) =f(x)+g(y) for (x, y)ed],
Ey={ueC(4; R": u(x,0)=0 and u(0, y) =0 for x, ye[0, a]}
and E, = Ey+Y.

Let dom L< E, be a linear subspace of all functions ueE; whose
derivative u,, is an integrable function and let L: dom L— %'(4; R") be a
linear mapping given by

L(u) = uy,.
It is clear that Ker L=Y and Im L= 4'(4; R").

Next, we define the convex-valued mappings ¢, @,, @,: E;, = £ (4; R")
given respectively by the following formulas:

p(u) ={we P (4; R": w(x, y)eF(x, y, u(x, y))ae. on 4},
o1 () = {(we L (4; R): lw(x, y)| < q(x, y)-|u(x, y)| ae. on 4],
@, (u) = lwe L' (4; R"): |w(x, y) € p(x, y) a.e. on 4},

where p and g are given in assumption (iii).
Moreover, let [,, l,: E; — Y be two single-valued continuous mappings
given by
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) =u(-, 0+u(0,-) and L =IwWelwu for uck,.
Since the right inverse ! %'(4; R") — E, to L has the form

Tw){x, y) = Z T w(s, t)dsdt,
0

by (I1.3.8) the problems (L, ¢, I, —1,), (L, ¢,, l;) and (L, ¢,, l,) are A-BVP’s.
From (1.5.5), the problem (L, ¢,, ;) has only the zero solution.
Therefore, in virtue of (IIL.2.2), the problem (L, ¢, I; —I,) has at least one
solution. The proof is complete.
Remark. In particular, when the mapping F: 4 xR"— R" satisfies
assumption (iii) with gq(x, y) =0 for every (x, y)ed and l(u) = 0 = T(u) for
every ueC(4; R"), we obtain from Theorem (1.2) Lasota’s result [62].

2. A multi-valued problem with nonlinear boundary conditions. Let F: A x

x R" = R" be a convex-valued mapping satisfying the following conditions:
(i) for each ueR", F(-, u) is a measurable mapping from 4 into R";
(ii) for each (x, y)ed, F(x, y, -) is a u.s.c. mapping from R" into R";
(iii) there exists an integrable function p: 4 — R, such that

[F(x, y, u)| € p(x,y) for each (x, y)ed and ueR"

Let C, ([0, a]; R') denote the space of all absolutely continuous func-
tions from [0,a] into R' and let I, [: C(4;R)-C,([0, a]; RY)
(=1,2,...,n be finite dimensional continuous bounded mappings such
that, for some (s, t)ed, I(u)(s) = 1(w)(t) G =1,2, ..., n) for every u.

For the mappings F, /; and T, (=1, 2,..., n) we formulate the following
nonlinear boundary value problem:

Uy (x, Y)EF(x, y, u(x, y)) ae. on 4

(2.1) w(- ) =L and s, ) =T (u),
where j=1,2,...,n and u=(u,, ..., u,).

A function u: 4 — R" satisfying the above equations such that u,,(x, y)
exists almost everywhere and u,, is an integrable function is called a solution
of problem (2.1).

(2.2) THEOREM. Problem (2.1) has at least one solution.

Proof. Let the mappmg F,l and T,j=1,2,...,n be as in (2.1) and
let Y, Yj c C,([0, a]; R') be finite d1mens1onal subspaces such that

Im /< ¥, and ImchY
We introduce the following functional spaces:

= {ueC4; RY: ulx, ) = (L) +/0); ..., L(x)+],0)) for
(x,)ed, fieY, fie¥ (=1, ..., n},
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Eo={ueC(4; R"): u(x, y) = (ug(x, y), ..., uy(x, ¥)), u,(x. t;) =0 and
u;(s;, y) =0 for x, ye[O, a],j =1, ..., n, where (s;, t;) are given in (2.1)}
and

E, =Ey+Y.
Let dom L< E; be a linear subspace of all functions ueE,; whose

derivative u,, is an integrable function and let L: dom L— #'(4; R") be a
linear mapping given by

L(u) = uy,.

It is clear that Ker L=Y and Im L = ¥'(4; R".
Next, we define the convex-valued mappings ¢, ¢,, @;: E, = £'(4; R"
given respectively by the formulas:

W) = {we L (4; R"): w(x, y)eF(x, y, u(x, y)) ae. on 4},
(pl (u) = {0}7
and

@2 (u) = {we L' (4; R"): [w(x, y)l < p(x, y) ae. on 4},

where p is given in (iii).

Moreover, let Iy, I: E; = Y be two single-valued continuous mappings
such that for each function ueE, of the form u(x, y) = (uy (x,.y), ..., (X, ¥))
for (x, y)ed we have:

lo(“)(x’ y) = (ul (x’ t1)+u1 (sla y)a raey un(x’ tn.)+un(sm ,V))
and
) (x, ) = (L @R+ @O, - L) )+ 0).

Since a right inverse T: #!(4; R") - E, to L has the form

Tw)(x, )= | w(s, t)dsdt for (x, y)ed,

Ot X
O ey

by (I1.3.8) the problems (L, ¢, lo—1, (L, ¢,, ;) and (L, ¢,, }) are A-BVP's.
It is easy to see that the problem (L, ¢,, l;) has only the zero solution.
Therefore, in virtue of (II1.2.2), the problem (L, ¢, I—1I) has at least one
solution. The proof is complete.
Remark. Theorems (1.2) and (2.2) remain also true for the multi-valued
non-convex mapping F: 4 x R" - R", which admits a convex-valued, weakly
compact selector (comp. (11.4.1)).
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VI. Boundary value problems for elliptic
partial differential equations

In this chapter we will study the existence question for the multi-valued
general boundary value problem.

1. Basic function spaces. Let G = R" be a bounded open domain whose
boundary @G is an C*-manifold. In what follows we will consider real-valued
functions of the following type:

u: G —R!. For a multi-index a = (a,, ..., &,) and a function u: G — R*' the
symbol
Dlly
D*u =
(! xl A & x"
will denote the partial derivative of u of the order |af =a;+...+a, (if it
exists).

Let C™(G) be a space of all functions u from G into R' which are

continuous together with derivatives D*u, |a| <m, and let
C"(G) ={ueC™(G): [ ¥ [ID*u(x)lPdx]'? < oo}

lel<m G

for 1 € p< . In the space C;"(G) we define the norm as follows

Il = [ 3 [ 1DuGpdx] ™.
lal€m G
By H,, ,(G) we will denote the Sobolev space which is the completion of
Cm(G) with respect to the norm ||+ ||y,,: ,
By C%(G) we will denote the space of all functions ue C™(G) which have
a compact support in G. The completion space of all the functions in C§(G)

with respect to the norm || ||, . will be denoted by HG(G).

Let u, v: G — R! be two integrable functions. We.say that the function v
o

is the a-th weak derivative of u, if for every feC3(G) = Cs(G),
=0

m

[ ulx) DAf (x)dx = (— 1 [ o(x)f (x)dx.
G

G

Then we write D*(u) = v.

The following three facts are well known (see, for instance, [1, 33, 79]).

(1.1) The embedding J: H,,(G) = H,_,,(G), given by J(u)=u, is a
completely continuous mapping.

(12) H,,(G) =lue L (G): D*(weZL?(G), o] < m).

(13) Let |of <m. The operator D*: H,,(G)~ £L*(G) is a continuous
extension of the operator D*: CI'(G) — C°(G).
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Let C™(G) be a space of all functions u from G into R' which are
uniformly continuous together with derivatives D*(u) for |« < m. In the space
C™(G) we define the norm by putting:

luln = 3, sup |D*(u)(x).

lal<m xeG

Let C"*#(G), 0 < u < 1, be the Holder space with the norm

|D* (u) (x) = D* () ()
Uty = Ulm+ su
| I +u I | |a|z=m p{ |x_ylp
Note the following (see, for instance, [1], [79]).
(14) The embedding i: C™**(G) — C™(G), given by i(u) =u, is a com-
pletely continuous mapping.

From the Sobolev embedding theorem (see, for instance, {17, [79]) we
instantly obtain the following.

(1.5) Let p > n. Then, for u= n/p, the mapping j: H,,,,,(G) — C™ ¥ (G)
given as follows:

@ =u] < [ueC™ *4(G) and u(x) = (x) a.e. on G]

is correctly defined and it is a continuous mapping.

:x,yeG, x ;éy}.

2. The general boundary value problem. Let us introduce the following
differential operator

(2.1 Y, @()D*=3 ) dy.,()Dio...0D),
lal <m k=0 aj+..+a,=k
where the coefficients a, (‘) are functions from G into R!.
The operator (2.1) is called elliptic if for all xeG and ¢ = (¢4, ..., &)
from R"\ {0} we have
Z 11 ¢n(x) éﬂl a" # 0'

ayt..Fa,=m
Let A,: H, ,(G)— #7(G) be an elliptic operator given by
A,wx) = Y a(x)D*)(x) for every xeG,

la|€m
where
a(-)e ﬂo C™(G)=C7 (G).
Let B,: C""Y(G)-»C°G), k=1,2,..., ko, be differential operators
given by
B(w)(x)= Y bi(x)D*(u)(x) for every xeG,

IBI Srn,,

where m, < m, b¥(\)eC™(G) for k=1,2, ..., k.
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Recall the following a priori estimates for A4, (see [79]).
(22) ProrosrrioN. Let p>n, let Ker A,=0 and let j: H,,(G)
— C"~1*#(G) be the embedding given in (1.5). Then there exists a constant
M > 0 such that, for every ue{veH,, ,(G): (B,oj))ag=0,k=1,2,..., ko},
tllmp < M -1 Ap (u)llp-

For a convex-valued mapping F: G xR*—R' and for the boundary
differential operators B, (k =1, 2, ..., ko) we formulate the following boun-
dary value problem

ueC™ 1(G),
(2.3) A, (u)(x)eF(x, u(x), D’(u)(x)) ae. on G,|fl <m, p>n,
B, w)(x)=0 for xedG,k=1,2,...,ke.

(24) THEOREM. Suppose that a convex-valued mapping F: G x R* - R!
satisfies the following conditions: .

(i) for each xeG, F(x, ") is a us.c. mapping from R? into R';

(ii) for each veR? F(-, v) is a measurable mapping from G into R!;

(iii) there exists a function f e £?(G) with p > n, such that

IF(x,v)| €f(x) for xeG and veR2

Assume moreover that Im A, = £?(G) and Ker A, =0. Then problem
(2.3) has at least one solution.

First, we prove the following lemma.

(2.5) LEMMA. Suppose that all assumptions of (2.4) are satisfied. Then there
exists an A-BVP (L, o, I) the set of all solutions of which is equal to the set of
all solutions of the problem (2.3).

Proof. Let us put
E, =(C""'06),|'|n-;) and dom L= {ueC"“ll(G): ueH,,(G)}.
Now, let us specify the following mappings:
Y: E, - 2"G), p>n, and L: dom L- #°(G)
given respectively by

Y(u) = (we £*(G): w(x)eF(x, u(x), D*(u)(x)) ae. on G} for every uek,
and
L(u) = A,(u) for every uedom L.

Let T. #7(G)~E, be a right inverse to L. We consider the comutative
diagram
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-1
Ap

£7(G)

~dom L, || *[|m,p)
i

(dom L, | Im=144)

E,

Since by the Banach theorem the mapping 4, ' is continuous, in virtue of
(1.5) and (14) Tis a completely continuous mapping. Let D: E,.— C(G; R?)
be a linear continuous mapping given by

D(u)(x) = (u(x), D*(u)(x)) for every xeG

and let ¢: E, » %?(G) be given by putting

e=yoD,

It follows from (II.3.6) that the composition Tog: E; - E; of ¢ and Tis a
completely continuous mapping.

It is easy to see that a single-valued mapping I: E, - Ker L is a
constant mapping, /(u) = 0 for each ueE,, and the set of all solutions of
problem (2.3) is equal to the set of all solutions of the A-BVP (L, ¢, I). The
proof is complete.

Proof of (2.4). Let us put r = j' f(x)dx, where the function [ is given
G
in (2.4) (iii), let B, = #?(G) be a ball with centre at zero and radius r and

let (L, ¢, ) be the A-BVP given in (2.5). Then, in virtue of our assump-
tions we get

ou)<B, for uckE,.

Let us put r, = 2Mr, where the constant M >0 is given in (2.2). From
(2.2) we obtain

[IL(w)l, > r for each [[ully, =r,.

Now, in virtue of (II1.2.1), the problem (L, ¢, }) has at least one solution. The
proof is complete.

Remark. Theorem (2.4) remains also true for the multi-valued non-
convex mapping F: G x R?2— R', which admits a convex-valued, weakly
compact selector (comp. (11.4.1)).
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