CONTENTS 0. Introduction and notations...................................................5 1. Basic properties of delta-convex mappings.........................8 2. Delta-convex curves..........................................................15 3. Differentiability of delta-convex mappings.........................17 A. First derivative...............................................................17 B. Second derivative of mappings $F: R^n → Y$...............23 4. Superpositions and inverse mappings..............................26 5. Inverse mappings in finite-dimensional case.....................31 6. Examples and applications................................................34 A. Three counterexamples.................................................34 B. Nemyckii and Hammerstein operators............................36 C. Weak solution of a differential equation.........................38 D. Quasidifferentiable functions and mappings..................41 7. Some open problems........................................................44 References...........................................................................47
Faculty of Mathematics and Physics, Charles University, Sokolovski 83, 186 00 Praha 8, Czechoslovakia
Bibliografia
[1] A. D. Aleksandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Uch. Zap. Leningrad. Gos. Univ. Ann. Ser. Math. 6 (1939), 3-35 (in Russian).
[2] A. D. Aleksandrov, On surfaces represented as the difference of convex functions, Izv. Akad. Nauk. Kaz. SSR 60, Ser. Math. Mekh. 3 (1949), 3-20 (in Russian).
[3] A. D. Aleksandrov, Surfaces represented by the differences of convex functions, Dokl. Akad. Nauk SSSR (N. S.) 72 (1950), 613-616 (in Russian).
[4] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57 (1976), 147-190.
[5] M. G. Arsove, Functions representable as the difference of subharmonic functions, Trans. Amer. Math. Soc. 75 (1953), 327-365.
[6] J. M. Borwein, Generic differentiability of order-bounded convex operators, J. Austral. Math. Soc. Ser. B 28 (1986), 22-29.
[7] N. Bourbaki, Éleménts de Mathématique, Variétés différentielles et analytiques, Paris 1967, 1971.
[8] H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math. 66 (1936), 1-47.
[9] H. Cartan, Calcul différentiel, Forms différentielles, Paris 1967.
[10] F. H. Clarke, On the inverse function theorem, Pacific J. Math. 67 (1976), 97-102.
[11] V. F. Demjanov and A. M. Rubinov, On quasi-differentiable functionals, Dokl. Akad. Nauk SSSR 250 (1980), 21-25 (in Russian).
[12] V. F. Demjanov and A. M. Rubinov, On quasi-differentiable mappings, Math. Operations-forsch. u. Stat. ser. Optimization 14 (1983), 3-21.
[13] V. F. Demjanov and L. V. Vasiljev, Nondifferentiable Optimization, Springer-Verlag, New York 1985.
[14] J. Diestel and J. J. Uhl, Jr, The Radon-Nikodym theorem for Banach spaces valued measures. Rocky Mountain J. Math. 6 (1976), 1-46.
[15] N. Dunford and J. T. Schwartz, Linear Operators, 1. General theory, New York 1958.
[16] M. Fabián and D. Preiss, On the Clarke's generalized Jacobian, Proceedings or the 14-th Winter school on abstract analysis, to appear in Supplemento ai Rendiconti del Circolo Mathematico di Palermo.
[17] S. Fučik, Solvability of Nonlinear Equations and Boundary Value Problems, Prague 1980.
[18] P. Hartman, On functions representable as a difference of convex functions, Pacific J. Math. 9 (1959), 707-713.
[19] J. -B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, preprint.
[20] Hoàng Tuy, Global minimization of a difference of two convex functions, Lecture Notes in Econom. and Math. Systems 226, Springer-Verlag 1984, 98-118.
[21] Ch. O. Kiselman, Fonctions delta-convexes, delta-sousharmoniques et delta-plurisoushar-moniques, Lecture Notes in Mathematics 578, Springer-Verlag 1977, 93-107.
[22] K. Kuratowski, Topology, Vol. I (transl.), Academic Press, New York 1966.
[23] E. M. Landis, On functions representable as the difference of two convex functions, Dokl. Akad. Nauk SSSR (N. S.) 80 (1951), 9-11.
[24] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189, Springer-Verlag, 1986.
[25] F. Mignot, Contrôle dans les inéquations variatonelles elliptiques, J. Functional Analysis 22 (1976), 130-185.
[26] A. Nijenhuis, Strong derivatives and inverse mappings, Amer. Math. Monthly 81 (1974), 969-980.
[27] A. V. Pogorelov, Surfaces of hounded extrinsic curvature, 1956 (in Russian).
[28] B. H. Pourciau, Analysis and optimization of Lipschitz continuous mappings. J. Optim. Theory Appl. 22 (1977), 311-351.
[29] D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202-204.
[30] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Proceedings of the 11-th Winter school on Abstract Analysis, in Supplemento ai Rend. Circ. Mat. Palermo (2) no. 3 (1984), 219-223.
[31] A. W. Roberts and D. E. Varberg, Convex functions, New York and London 1973.
[32] A. Shapiro, On functions representable as a difference of two convex functions in inequality constrained optimization, Research report University of South Africa (1983).
[33] M. M. Vajnberg, Variational methods for the study of nonlinear operators (in Russian), Moscow 1956, English translation: Holden-Day, San Francisci 1964.
[34] L. Veselý, On the multiplicity points of monotone operators on separable Banach spaces. Comment. Math. Univ. Carolinae 27 (1986), 551-570.
[35] L. Veselý, A short proof of a theorem on compositions of d.c. mappings, to appear in Proc. Amer. Math. Soc.
[36] L. Veselý, On the multiplicity points of monotone operators on separable Banach spaces, II, Comment. Math. Univ. Carolinae 28 (1987), 295-299.
[37] L. Zajíček, On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J. 29 (1979), 340-348.
[38] L. Zajíček, On differentiation of metric projections in finite dimensional Banach spaces, Czechoslovak Math. J. 33 (1983), 325-336.
[39] V. A. Zalgaller, On the representation of a function of two variables as the difference of convex functions, Vestn. Leningrad. Univ. Ser. Mat. Mekh. 18 (1963), 44-45 (in Russian).