CONTENTS §1. Introduction.......................................................................................................5 §2. The construction of the Wallman cover.............................................................8 §3. The minimal clopen cozero-complemented cover of a compact space............16 §4. Wallman compactifications versus Wallman cover...........................................24 References...........................................................................................................31
[Ba] C. Bandt, On Wallmon-Shanin compactifications. Math. Nachr. 77 (1977), 333-351.
[BH] R. L. Blair and A. W. Hager, Extensions of zero-sets and of real-valued functions. Math. Z. 136 (1974), 41-57.
[DHH] F. Dashiell, A. W, Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
[GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960.
[H] A. W. Hager, The projective resolution of a compact space, Proc. Amer. Math. Soc. 28 (1971), 262-266.
[HVW] M. Henriksen, J. Vermeer, and R. G. Woods, Quasi-F-covers of Tikhonov spaces, Trans. Amer. Math. Soc. 303 (1987), 779-804.
[MV] J. van Mill and J. Vermeer, Wallman compactifications and the continuum hypothesis, Topological Structures II, Math. Centre Tracts No. 116 (1979), 181-185.
[PW] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff spaces, Springer, New York 1987.
[S] L. B. Šapiro, Reduction of the main problem on compactifications of Wallman type, Soviet Math. Dokl. 15 (1974), 1020-1023.
[Ul] V. M. Ul'yanov, Solution of a basic problem on compactifications of Wallman type, Soviet Math. Dokl. 18 (1977), No. 2, 567-571.
[V] J. Vermeer, The smallest basically disconnected preimage of a space, Topology Appl. 17 (1984), 217-232.
[Wa] R. C. Walker, The Stone-Čech compactification. Springer, New York, 1974.