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1. Introduction

The parameter identification problem is known also as the inverse
problem.

Some experimental investigations are described in [1] and one can
find theoretical results by A. D). Iskenderov, RR. J. Lermit, J. \V. Mosevich,
B. F. Jones, A. V. Balakrishnan, G. I. Marchuk and others. There exist
many different ways of approach.

Suppose the values of the solution of the heat conduction equation
have becn measured at discrete points in time and space (discrete ob-
servation). The continuous dependence of the undetermined coefficients
on the data and the region is proven for this partial differential equation.

The problem of determination or identification of the paramecters
of a solid arises in course of the development of new solids in the glass,
ceramic or steel industry.

2. The ordinary differential equation as an illustration

The simple and well known growth problem of a population is defined
by the ordinary differential equation

(1) y'(t) =cy(t)1 '?/(0) =y0>07 OQJQT,

where a sequence {y;}¥, of measured data (an observed solution) y; = y(%;),
0 =t,<t;<...<ty =T, is given and the constant ¢ is unknown. The
solution of (1) is

(2) Yy (1) = yoexp(ct).

[281]
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First let us discuss some possibilities of evaluating e:
1. The analytic solution for the value of ¢ is

1 i
(3) ¢=o(t) == In y«/(o) .

Assume a specific value for #; we ignore many other points because
0f the general situation e¢(f;) # ¢(f;) for ¢ #j.
2. The assumption

y'(1) - Y {(tiy) —y(t)

y(t) Aty (1)

is also very poor since numerical differentiation is required. We must
again chooso a specific .

3. The following consideration based on the equivalent integral
equation

@) =

1
(5) y(t) =yo+¢ [ y(a)ds

0

supplies a better approximation
_ Y (1)~ Yo

(6) Z
ofy(:v) dz

4. The best approximation for ¢ based on all values y, is obtained
by the following
Yy =cy,

] {

fy’(a:)dm = cfy(w)dw,

0 0

Ct— R

7
(y(t) —yo) dt = ffy (z)dwdi = cij(m)dwdt

o

T
=ofT x)y(x)dz,

(7)

— Yo dt/f -ty

which requires more computing expense.
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All these cases show the difficulties arising in the solution of this
simple inverse problem.

3. The heat conduction equation

Let us consider a solid given as a full infinite cylinder, and assume that
we have the possibility to measure the temperature 7'(x,t) at points
(¥, [;) belonging to the set

(8) Omes = {(Tis )1 1 = 0,1,y 1y 0K F <7 <l <Fp 5
i=01..,1, % =32}, (equidistant), Z — whole

time of measurement}.

The solid is homogeneous, isotropic and without heat sources.

We consider the temperature as a solution of the one-dimensional
heat conduction equation in an infinite cylinder with the radius B = F,
This parabolic initial-boundary value problem has the form

.
m

®) (oeT) - = (D) 5
in the bounded domain @ = {(r,?): 0<7r< R, 0 <t<Z} c R*® with
(10) T(r,0) = wuy(v), 0<r< K (initial condition),
R
(11) o ey t>0 (boundary condition),

T(R,1) = ¢t}

where the coefficients, the heat conductivity 4, the density g, the specific
heat ¢ and the heat capacity per unit volume cp are positive. Either cp
or A is the unknown funection of T.

4. The identification algorithm

Analyzing this problem numerically, we assume the following step al-
gorithm;

1. Approximation to the I.C. u,(r) using the values 7 (7;, 0):
— manual, e.g. with cubic splines,
— by the Newton interpolation polynomial of degree % = r, < 4,
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— by the least squares method using polynomials of degree %
< min(4, 1,,).

2. Approximation to the B.0. g, (¢) using the values T(R, t):

— manusal,

— by the piecewise-lincar funetion (a polygonal line) through the
values T(R, 1)),

— by the least squares method using polynomials (of degree %
< min (4,1%,)) or the exponential function (b-exp(dt)).

3. Solution of (9)~(11) with use of a finite difierecnce method as-
suming the equidistant mesh
(12) G, = {(ry, 4;): v; =4 h, b = R/N, spatial step size;
t, =j'T, v = Z/|N, temporal step sizc}

such that ¥,/t,, and (7;., —7,;)/h are integers. Then we have Gy, = G), < G.
We seek either cp or A in the form

n
(13) ZaiT"‘l, where » < 7.
i=1

The following difference schemes are possible:

— explicit method,

— implicit linearized mcthod (chase method; progonka (Russ.)),
— implicit iterative method,

— COrank—Nicolson linearized,

— Crank—Nicolson iterative.

4, Computation of the functional
*m tm
(14) B0y, Gy oory 0y) = Zo‘ 20‘ (T(7,, }) =T (7, §,))?
i=0 j=
and its minimization by a gradient-like method
(16) ™) = oML ™ m =0,1,...; o given,
with the finite difference approximation of the Jacobian matrix, i.e.

s™ = _JE(a™) (steepest descent step)

or the Hessian matrix, i.e.

s™ = —H-'JE(a"™) (Newton step).
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There exists a computer test program in PL/1 and ALGOL 1204 with
some additional refinements.

5. Numerical examples

We have tested the algorithm on the ES 1040 computer in double p’rcci-
sion on several test problems of varying character and difficulty.

Test problem 1. For a cylindrical solid we have measured 6 diffcrent
temperature fields 7'; by cooling and/or heating, with #,(r) = constant,
The parameters are given in Table 1:

Table 1
{ k= F"m z m = 7 7
i Tm b (m) (h) g | 1 Ty T
T, T, 3 60 .030 1/2 014 .023 .026 .03
T,.,T.,. Ty | 3 40 .030 1/3 014 .023 .020 .03
T, 2 30 .030 1/4 014 020 .030

The coefficient ¢o is equal to 720 and we seck the constant function 2 = a,.
The algorithm applies the least squares method using polynomials of
degree .k = 0 for uy(r), the polygonal lines for ¢,(!) and the difference
method “C-N linearized” with the grid size 30 x{,,. Ifor each example
the minimization process is convergent for arbitrary nonnegative start
point ¥ and computes 6 values of a; and the average deviation

‘ 1
D = st ((un, 0ty +1)

-E(al)), as shown in Table 2:

Table 2
_ first 1/2
l | T, ; T, ‘ ’ l Ts ' Ts ' part 7,
! a, 1.172 | 1.264 I 1. 186 12’58 1.354 1.213 1.240
i D(°) 2.2 ‘ 6.4 ' 1.2 1.0 8.3

All measured temperatures belong to the interval (83° 441°),

Test problem 2. A temperature field 7 was generated by the program
itself and then we have tried to identify the wvalues carrying out the
minimization (15) with different start veetors a(®,
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The parameters and data for gencration are

R =7 =0030m, cp = 720,
A=12,
Z =0.25h, U (1) = 342,
(16) T =3, 7a(t) =842-exp( 1),
t, = 30, 7o =0,
N, =10, 7, = 0.015,
N, =30, 7y = 0.024,
“C~N linearized”, 7y = 0.030.

The funetion A = 1.2 is our unknown.

Variant 1: # = 1. The algorithm is convergent for every start
point a® > 0 and also for a{” < 0, while we do not compute number
overflow, see Fig. 1. The numerical investigation underlines the existence

rela,)
\

102 F
10' ¢

TFig. 1. The function FE({a,)

and uniqueness of solution (a constant positive value) and the conver-
gence of minimization process to this constant.

Variant 2: # = 2. Figures 2 and 3 show the domain of conver-
gence of the minimization algorithm lying above the curve

a, = —3:107%a,—107%,

In other domains the coefficient A = a, 44,7, 0< T <342, is very
negative, and hence not allowed in equation (9). This is also the case
of a great deal of extrema. Choosing a start vector ¥ in this domain
we cannot expect, in general, a descent process to the absolute minimum.
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4x10"

domain of
convergence
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minima

-5x107

peak
10°
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J—] 1 | P
-5 -3 -107? -5x1073 0 107 5d0° g,

Iig. 3. The function F(a,, a,) with the constant component a; = 1.2

The examples given in Table 3 show the good quality and perform-
ance of the procedure.

For the computation of the value E(a) we must always solve the problem
(9)-(11), (16) approximatively. The computing time is about 120 see
and belongs for all tests to the interval F'(1,1.2), where F is the last
number in the 4th column of Table 3, here 86429 = 104,

Table 4 shows that we can obtain convergence in spite of an unfa-
vourable choice of the start vector. In the second part of this table we
illustrate the minimization process if a, = constant. The algorithm is
very slow if the component a, lics far away from the valley ecurve in
the positive direction.



288 W. NEUNDORF

Also in this case the existence and uniqueness scem to be guaranteed
under additional conditions on the coefficient functions, I.C. and /or B.C,

Table 3

N A= a + ay- T F E(a)

0 b 0 1 1,164

1 .5000 2030 .00G4 6648 5 7.74153

2 —16.5988 271 0603 4697 20 4.77E3

3 —13.0407 149 .0462 3392 31 2.41L3

4 —13.0407 127 .0468 3369 43 2.37L3

5 — .D6G3 8062 0061 9034 67 4.40E2

] —2.0644 6040 *.0103 4211 66 1.43E2

7 1.1803 6679 .0000 7479 77 1.80E —1
8 1.2023 3812 —.0000 0741 82 7.27E —5
9 1.2007 6386 —.0000 0230 B6+2:9 3.06E —5

N — number of iteration, ' — number of evaluations of the function ¥ (a)

Table 4
N A=a + a, T F E(a)
0 1.2 —.01 1 3.25E11
1 1.2233 2787 .0202 4551 5 2.6854
2 1.2420 2062 ,0058 2810 15 1.14E4
4 8.7814 7573 —.0239 4664 36 8.12E2
8 4.0604 7108 —.0093 8961 68 2.46E2
7 }.4583 2575 —.0007 9787 79 1.67E0
8 1.2065 5343 —.0000 2157 85 1.07E -3
9 1.1988 8587 .0000 0335 90 6.47E -5
18 1.2009 0873 —.0000 0294 128 1.23E =5
177 1.2007 5754 —.0000 0242 3551 7.37E —6
0 1.2 —.01 1 3.25E11
| 1 1.2 .0281 9660 5 3.02E4
2 1.2 .0265 6007 17 2.9754
3 _ 1.2 0197 0204 21 2.02E4

Variant 3: n = 3. We obtain no convergence (or, maybe, very

slow convergence) also for al® ~ 1.2, as can be shown not only by
the following examples.
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Table 5
N A=a + a,-T + g T2 F FE(a)

0 | 1.15 .0 0 1 3.17E1
21 1.1226 8605 .0004 9861 ~.0000 0080 248 1.72E — 4
2() 1.1226 8400 .0004 9861 —.0000 0080 434 1.72E —4

0 1.3 0 .0 1 1.11E2
02 0080 1268 .0005 8158 .0000 0023 1381 7.49E —1

105 1.2314 4216 —.0002 02178 .0000 0033 2133 '2.85E —&

6. Conclusion and discussion

In order to recognize the specific nature of the identification problem
it would be desirable to answer some open problems and to aim at fur-
ther improvements of the algorithm. These are

1. For what cases and under what conditions is the existence and
uniqueness of the solution provided %

2, What can be said about the size of the set of measured values T'%

3. What is the influence of perturbations in the field T on the sol-
ution?

4. Among functions of what form are we to seek the coefficient
functions ¢p or A%

5. Addition of a regularization term (penalty function) and a corrector
term to our functional in order

— to obtain a convex function and smoothing effect on the solution,

— to stick to the admissible domain of the unknown coefficient.

6. Choice of one or more functionals E.

This is to point out the necessity of continuation of further system-
atical theoretical and practical investigations.
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