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In our previous paper (see [1]) we define a storage cost measure on decision
trees and propose heuristic algorithms to construct minimal trees with
‘respect to that measure. For the current paper we develop some rules on
decision trees which allow us to manipulate them into more convenient
forms. The completeness theorem proved by us gives the certainty that there
is a way of applying our rules to a tree to construct a minimal tree for the
one we start with.

Introduction

In this paper we define a notion of an information tree on the universe U,
where U is a set ol attributes. Information trees are similar in structure to
decision trees applied to identification problems. The main difference between
information trees and decision trees lies in the interpretations and applica-
tions. Their structures and methods of constructions are often transferable to
-each other. In decision trees nodes are labeled by queries, edges by responses
to these queries and leaves by some objects uniquely identified by the path
from the root to the leaf. Now, having some item which we want to classify
we pick up queries one after another starting from the root of a decision tree
and being controlled by responses to them. In an information tree, internal
nodes are labeled by attributes and terminal nodes by sets of obyects. A path
from the root to a leaf is interpreted as a description of objects labeling that
leal.

Decision trees have been investigated in the literature by many authors
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and have applications in decision table programming, pattern recognition,
taxonomy and identification, switching theory, expert systems and analysis of
algorithms. Some decision trees are equivalent with respect to the informa-
tion they keep, so we may ask for an optimal tree in the class of equivalent
trees. To ask for a minimal tree we have to develop first some measure on
decision trees. A storage cost and a testing cost measures are the most
natural ones. In our paper (see [1]) we propose a heuristic polynomial
algorithm to construct a minimal tree with respect to the storage cost. It is
worth to note that the problem of constructing even a minimal binary tree
with respect to the storage cost is to be known as NPcomplete. The method
proposed by us in [1] requires for a given tree T to construct a matrix
representation of 7 and next on the basis of this matrix we look for a
minimal tree. Questions we would like to state in this paper say: can we look
for this minimal tree for T without using its matrix representation? Can we
manipulate information trees algebraically into more convenient forms?

To answer these questions we devise a representation of information
trees as terms in a formal theory (theory of information trees) and present
rules to manipulate them. Next we show that the rules proposed by us are
complete in constructing equivalent information trees and deducing weaker
information trees. Completeness theorem proved by us clearly does not give
any new (heuristic) method for constructing minimal trees. However, it gives
us the certainty that applying system’s rules to T we will arrive to a minimal
tree.

1. Basic definitions

In this section we recall the definition of an information tree and introduce
the notion of equivalence of two information trees and the notion of one tree
being covered by another.

Let U be a finite set of attributes called the universe. For each Ae U, let
V, be the set of attribute values of A. We assume that V is finite, for any
Ae U. By an information tree on the universe U, we mean a tree T = (N, E)
such that:

(a) each intertor node is labeled by an attribute from U,

(b) each edge is labeled by an attribute value of the attribute that labels
the initial node of the edge,

(c) along a path, all nodes (except the leaf) are labeled with different
attributes,

(d) all edges leaving a node are labeled with different attribute values (of
the attribute that labels the node),

(e) a subset N, of N is given, each node in N, is called an object node.
So an information tree can be thought of as a triple (T. I, N|) where T
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=(N, E) is a tree, N, = N and [ is the labeling function from N, u E into

Uu(l) V,). The set N, is a set of internal nodes in T.
AU

Let m be an object node, n,, n,, n;, ..., n, with n, = m be the path from
the root n, to m. Objects node m determines an object type O(m)
= {[I(n), ([n;, m+,D]: i=1,2,..., k—1} where I(n) is the label of the
node n;, which is an attribute. [([n;, n;, ]} is the label of the edge [n;, n;, ],
which is an attribute value of the attribute I(n,).

An information tree S = (N, E), I, N,) determines a set of object types
0(S) = {O(m): men;}. Two information trees S,, S, are said to be equivalent
if and only if O(S,) = 0(S,). If O(S,) = 0O(S,), we say that S, is covered by
S,.

ExaMPLE 1.

male
female

The above figure represents an information tree S =((N, E), I, N)),
where N =1a,b,c,d,e, f,g,hi,j}, E={[a, bl, [b,e], [b,Sf], [a,c],
(a, d], [d, g1, [g, i}, (g, /1, [4, k1},

I(a) = color, [{[a, b]) =red, I([a, c]) = blue,
I(b) = sex, I{([a, d]) = yellow, [([b, e]) = male, I([b, f]) = female,
I(d) =si1ze, [([d, g]) = large, I([d, h]) = small, 1(g) = sex,
l([g, i{]) = male, [([g,J]) = female,
N,={e f,c,g,i,j, h}.

11 — Banach Center 21
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The object type of the node f is {[color, red], [sex, female]}. This
information tree classifies seven different object types (determined by the
seven nodes in N).

2. Formal theory of information trees

In this section we shall define a formal syntax for representing information
trees which i1s motivated by the LISP representation in [3] and coalgebra
representation in [4]. We will introduce axioms and rules of inference for the
formal theory of information trees.

Let us use the information tree from Example 1 as a starting point in
this section. Assume V,,,, = {red, blue, green, yellow} is ordered as red, blue,
green, yellow; V, = {male, female} is ordered as male, female; V,, = {large,

Sex size

medium, small} is ordered as large, medium, small. Then the following term
Color(Sex(—, -), —, *, Size(ﬁ(—, —), *, —))

retains all the information about the information tree from Example 1. A bar
means the node is an object node. A star means the corresponding subtree is
empty.

To describe an information tree, we use the general scheme

attribute (subtree, , subtree,, ..., subtree,)

assuming the attribute has n different values.

Now we are ready to introduce a formal theory of information trees
over an attribute universe U. There are two constant symbols », — which
have the standard interpretation: empty tree and single node tree (tree with
one node being an object node) respectively. _

For each atrribute 4 in U with |V,| = n (where |V,| denotes the number
of attribute values of A), there are two n-ary function symbols f,, f,. The
standard interpretation of f,(t,, t,, ..., t,) is the information tree with the
root labeled A and next level subtrees t,, 11, ..., f,.

We represent f,(ty, t,, ..., t,) by the following graph

A

t, t, t,

The standard interpretation of f,(t,, t, ..., t,) is the information tree
with the root labeled 4 which is an object node and next level subtrees
[y bay ooy by
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We represent f, (¢, {3, ..., t,) by the following graph

AN

Function symbol f, is called a type O function symbol, f, is called a type
1 function symbol..

There is one predicate symbol =. Statement f, =, in the standard
interpretation says that ¢, and ¢, are equivalent.

Terms are defined by the following recursive definition:

DEFINITION OF TERMS. (a) constant symbols are terms,

(b) if g is n-ary function symbol, ¢, ¢,, ..., t, are terms not containing g
or its dual type function symbol, then g(r, ¢, ..., t,) is a term.

Intuitively, each term represents an information tree.

If a term does not contain any type 1 function symbol or the constant
symbol —, it is called null object term.

The nested level h(t) of a term ¢ is defined as follows:
(1) h(*) = h(=) = 0,
(2) h(fa(trs tas oo t)) = h(falty, tzy ooy ) = mj"(h([i)‘F 1.

Let ¢t be a term, we use [(f) to denote the standard interpretation of r,
ie., the information tree that r represents.

We have:

h(t) =n if and only if the height of I(r) is n.

If r is a term then by r we mean a new term defined below:

- if tis *,
t—= L(Il’t29"'a tn) lft iSfA(tl’IZs-'-y t,,),
t otherwise.

The formulas are defined by the following recursive definition:
DEFINITION OF FORMULAS. (a) t; =t, is a formula for any two terms i,,

(b) prg, pv g p—q p—q ~ p are formulas if p, g are formulas.
Our formal theory has the following axiom schemata:
Al. (reflexive) t =t is an axiom for any term ¢,
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A2. (nullity) = =t for any null object term ¢,
A3. (change the order of branching)

Flglti s tias coos tim)s G2ty Fa2s ooes Lam)s ooes GUnts En2s oons Tom))
Eg(.f‘(rl.l* 12_1, . t,,_,),f(!llz, ’2‘2, aay t".z), "'s_f(’l,mv tz_m, ey t"‘m))

is an axiom for any two type 0 function symbols f, g, where f is n-ary, g is m-
ary and for any n-m terms t;; (f < n, j < m) not containing f, g or their type
1 duals,

A4. p— (g — p) for any formulas p, q,

AS. (p—(g—n)—({p—q) —(p—r) for any formulas p, g. r,

A6. (~p— ~¢q) —(q —p) for any formulas p, q.

The rules of inference for our formal system are the following:

R1. from p—q and p we can deduce g for any formulas p, g,

R2. from t, =¢, we can deduce ¢(t;) =t(r;), where t(t,) 1s a term

containing r, as a subterm and t(r,) comes from ¢(t,) by replacing some of
the occurrences of r;, with r,,

R3. from t, =t,, we can deduce 1, =1,.

3. Completeness of the formal theory

In this section we shall prove that the formal theory defined in the second
section is complete with respect to the predicate =.

Let ¢t be a term, we shall use I(r) to denote the information tree
represented by r under the standard interpretation. Then we have the
following completeness theorem.

THEOREM 1. t, =1, if and only if I(1,) is equivalent to I(1,).

Proof (only if). All axioms Al, A2, A3 are valid under standard
interpretation and rules of inference R1, R2, R3 preserve validity under
standard interpretation. Hence all theorems are valid under standard inter-
pretation, so t, =t, implies that I(z,) is equivalent to I(t,).

(if) By induction on k = h({t,). Recall that h(¢,) is the nested level of t,.

Base. k = 0. Term ¢, is either * or —.

Case 1. Assume that ¢, is *. Hence I(t,) is the emply tree, so I(t,)
cannot have any object nodes, i.e, r, is a null object term. By the axiom A2,
we have |1, =¢,. _

Case 2. Assume now that r, is —. Hence r, must be of the form , where
t is a null object term. Since *» =t is 2n axiom for a null object term ¢, then
by R3 we have — =1.
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Induction step. Assume that:

[1(¢,) is equivalent to I(t;)] implies |, =¢, holds for all terms ¢,
with h(t,) < k.

Consider a term r, with h(t,) = k+ 1. The term ¢, 1s of the form either

faluy, uz, ..., u,) or fo(uy, us, ..., u,), where uy, u,, ..., u, satisfy the condi-
tion h(u,) <k, i<n.
Let us assume first that ¢, is of the form f, (u,, u,, ..., u,). Assume that

t, is of the form fg(v,, v,, ..., v,,). Observe that for each i, u; is either a null
object term or u; has an f; above every type 1 function symbol and an
/3 above —. So, we may use repeatedly A2, A3 and R2 to get w; such that
Fw=u and w;, is of the form fg(z,,2,,...,2,). Hence ¢,
= f.(w,, wa, ..., w,). Applying axiom A3 we have: |- f,(wy, wy, ..., W,)
= a1, Va2, ..., V) for some y,, vz, ..., ym With h(y;) < h(t,). Hence I(t,)
is equivalent to I(fs(v(,y2..... ¥m). Since I(t;) is equivalent to
1(fp(vy, vay ..., 0,)), we have I(y) is equivalent to [(v;) for any i, where
i < m. By induction hypothesis we have, v, =y, fori=1, 2, ..., m. Hence
+ 3V, Y2y ooy Ym) = fo(vy, V3, ..., v,) by the axiom Al and the rule R2.
Thus | t, = fg(vy, vg, ..., Up)-

If ¢, is of the form f,(u,, u,, ..., u,), then t, must be of the form
fp(vy, 05, ..., v,) or of the form —. The rule R3 will push this case through.

Recall (see [1]) that an optimal information tree for I(ty) with respect to
the storage cost is an information tree with a fewest number of edges among
all equivalent information trees to I(ty). This optimal tree corresponds to a
term with a fewest occurrences of function symbols and the constant symbol
— among terms in {t: 1t =to).

Note that in A3, the left-hand side has {+n+k such symbols (I for f, n
for g, k for the function symbols and the constant symbol — in ¢;’s) and the
right-hand side has [+ m+k such symbols. So in simplifying terms, we have
the heuristic guidance of moving out a function symbol with fewer argu-
ments, which corresponds to moving up a node with fewer branches in an
information tree.

4. An expansion of the formal theory

In this section, we shall introduce a new predicate symbol <. We will prove
that the expansion of the formal theory defined in the second section is
complete with respect to that predicate symbol.

Statement 1, <t, has the standard interpretation I(t,) is covered by
I(t;), which means O(I(t,)) = O(I(t,)).

We need the following additional axiom schemata:



166 KEH-HSUN CHEN and Z. W, RAS

A7. t <t' for any null object term ¢ and an arbitrary term ¢,
A8. t <t for any term ¢,

A9. 1, <t AL, St ety =,

Al10. ¢, < rz Al €ty oty S Iy,

All. r <,
and the following additional inference rules:

R4. from t; < t,, we can deduce t(t,) < 1(¢,), where t,, t, are terms, £(t,)
is a term which comes from the term t(t,) by replacing one or more
occurrences of ¢, with ¢,.

RS. from t, <t,, we can deduce 1, <1,.

We can prove the following completeness theorem with respect to <.

THEOREM 2. |t, <t; if and only if 1(t,) is covered by I(t,).

Proof (only if). The additional axioms are all valid under standard
interpretation. The proof is below

Axiom A7 holds, since O(I 1) =0 co(I()).

Axiom A8 holds, since O(I(1)) < O(I(1)).

Axiom A9 holds, since O(I(t;)) = O(I(t,)) and O(I(ty)) =O(I(t,)) il and
only if O(I(¢,)) = O(I(t2)).

Axiom A10 holds, since O(I(t)) = O(I(t,)) and O(I(t;)) < O(I(t3)) imply
O(1(ty)) = O(I(t3))-

Axiom A1l holds, since O(1(t)) = O{I (1) v {Q].

The additional rules preserve validity under standard interpretation. The
proof is below:

Rule R4. O(I(ty)) < O(I(t,)) implies O(I(t(ty)) =

Rule RS. O(I(ty)) = O(I(t,)) implies G(I(ty)) v {@

Hence |1, <t, implies O(I(t,)) = O(I(12)).

(if) By induction on k = h(r,).

Base._k = 0. If ¢, is =, then by A7 we have |- ¢, <t,. If t; 1s —, then ¢,
must be ¢ for some t. By the axiom A7 we have |- * <t and using the rule
RS, - — <t

Induction step. Assume that:

[I(z,) 1s covered by I(t,)] implies | t, < t, holds for all terms t;, with
h{t,) < k.

Consider a term ¢, with h(1;) =k+1. Assume t, is of the form

Jaluy, uz, ..., uy), ty is of the form fg(vy, v,, ..., v,). All other cases can be
extended from this case without difficulty. For each i, u; is either a null

object term or has an f; above every type 1 function symbol or constant
symbol —, so we may repeatedly use A2, A3 and R2 to get w; such that
Fw,=u and w; is of the form fg(z},z5,...,2,). Hence |t
= fa(wy, Wy, ..., w,). By axiom A3, |- fy(wy, wa, ..., W) = fu(V1, Y2y ooos V)

O(I(t(t2)))-
L co(I())u @)
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for some y,, v,, ..., Vm With h(y) < h(t,). Since I(t,) is equivalent to
I{(fs(?1, ¥2, ---» ¥m)) and I(t;) is covered by I(fs(vy, vs,...,0,) then
I{(f5(¥1, Y25 .., ¥m)) is covered by I(f(vy, v, ..., v,)). Hence I(y,) is covered
by I(v;) for each i, i < m. So by induction hypothesis we have, |- y; <y,
for each i < m.

By rule R4 we have:

}_ fB(yls y21 ey ym) S."B(Ul’ Ya, ..o ym)
'_fﬂ(vla Yas ooy ym) g fB(UI, Uy oves }’m)

......................

F fa(vy, 02y ooy O (s Ym) < f3(0), 2y - ..y Upy).

Thus, - fa(Vi, Vas --«r Vm) < f3(V04, Vs, ..., v,) by repeated use of A10.
Hence | ¢, <€ fy(vy, v3, ..., v,) by A9.

5. Conclusion

Information trees investigated by us satisfy the assumption that on the path
from the root of a tree to a leaf there cannot be two nodes labeled by the
same attribute. We used such trees to implement an experimental dynamic
hierarchical data base holding the course grades of Computer Science
students at UNC-Charlotte. Trees allowing repeated attributes on a path
from the root of a tree to a leaf were investigated by Cockett (see [4]) and
used in the implementation of CASCADE system at the University of
Tennessee, Knoxville.
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