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Dedicated to
Profesor Edward Marczewsks

on the 40th anniversary
of the publication of his first paper

Introduction

In 1958 E. Marczewski introduced a general notion of independence
(called also “algebraic independence”; see [11], [13] and [16]), which
contained as special cases majority of independence notions used in va-
rious branches of mathematics. In particular; it included linear indepen-
dence (of vectors, poinits and numbers), algebraic independence of numbers,
independence of polynomials and, more generally, of continuous functions,
set theoretical independence, logical independence, etc.

However, there are independence notions which are not covered by
this scheme, although they have much in common with it, such as. linear
independence in abelian groups. Some wealker notions than algebraic
independence (this notion we shall call M-independence) were developed.
J. Schmidt introduced in [20] the “independence-in-itself” (which we
shall call here S-independence), S. Swierczkowski dealt (in [21]; for the
sake of only one particular theorem) with “wealk independence” (it appears
in our paper as S,-independence). Further G. Graetzer used such a “weak
independence” (in [8]) to include the linear independence in abelian
groups (for subsets which do not contain the zero element). This notfion
will be called here G-independence.

As a common way of defining all this notions E. Marczewski proposed
in [17] a notion of independence with respect to a family @ of mappings,
and called if Q-independence. We shall introduce in this paper two kinds
of Q-independence: A4,-independence and R-independence.

The general properties of the Q-independence were investigated in
[17] — we complete (in § 2) this list with a number of simple remarks.
In § 3 we give a certain (quite natural) necessary and sufficient condition
for a family J of subsets of a fixed algebra in order that there exists a fa-
mily Q, such that the family of Q-independent subsets overlaps with oJ.
In an algebra A every family of mappings may be extended in a unique
way to a maximal family giving the same independence. The set of all
such maximal families for a given algebra forms a Boolean algebra anti-
isomorphic to the algebra of Q-independence subsets (Theorem 1).
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It is of great importence in investigating the M-independence, that
the family of M-independence subsets is hereditary and of finite character.
Algo the families of Q-independent subsets are hereditary whenever
Q0 =S5,,8,G, A, and they are of finite character for Q = &, 4,, R.
E. Marczewski in [17] found some sufficient conditions for the family
Ind(Q) to possess any of these two properties (see (iv) and (v) in § 2).
Using maximal families of mappings it is easy to formulate necessary and
sufficient conditions for the family of Q-independent subsets to be here-
ditary, and of finite character, respectively (Theorem 2 and 3). Hence,
we obtain a connection between these properties, for families of Q-inde-
pendent subsets (Corollary 6), which seems to be interesting.

It is important also to define a family of mappings for a given algebra
in such a manner as to make the notion of independence with respect to
this family equivalent to C-independence i. e. to the independence defined
by the algebraic closure (Corollary 4 comp. also Theorem 10 in § 6).

In § 4 we get the results analogous to respective theorems concerning
M-bases of different powers (under some assumptions on the family Q,
which are fulfilled in particular for the family Q = R of all injective
mappings; Theorems 4, 5 and 8). Among others we prove under some
restrictions on Q, that the powers of all Q-bases are finite and form an
arithmetical progresion, whenever there exist two Q-bases of different
powers (Theorem 8). The assumptions of Q are of this kind, that as a con-
sequence of them we get an isomorphism between subalgebras generated
by Q-independent subsets of the same cardinality (Theorem. 7), and
furthermore that Q-independence is stronger than C-independence (The-
orem 6). Under those assumptions a Q-independent set of generators
(a Q-basis) is simultaneously a minimal set of generators (corollary
of Theorem 6) and a maximal Q-independent set (Corollary 12), which
is not true, in general. It is worth adding that there may exist simul-
taneously finite and infinite G-bases. _

In§ 5 we prove a theorem on exchange of Q-independent subsets under
some natural conditions on the family Q (Theorem 9).

In Chapter IT we construct a certain family of mappings for which
the Q-independence of at least two-element subsets coincides with the
C-independence (§ 6, Theorem 10). Since this family is contained in the
family S, we conclude that in v**-algebras the notions of M-, S-, S,-
and C-independence coincide for subsets containing at least two elements
(Corollary 20). In particular, it is true also for linear and affine spaces
(Corollary 21). In§ 7 we also characterize the G-independence in mentioned
algebras (Corollary 21 and 22).

In abelian groups G-independence is equivalent to linear indepen-
dence for subsets not containing the zero element (G. Graetzer [8], see
also [17]). In Chapter III we give a characterization of S,- and S-inde-
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pendence in abelian groups (Theorems 12 and 13 of § 8). A connection
of S,- and G-independence is formulate in the Corollary 23, and seems
to be of some interest. However, the A -independence is not interesting
in abelian groups, because every subset iz A,-independent and the same
holds in all so-called wealdy commutative algebras (see (xi) of § 2).

In § 9 we generalize the results concerning S-, S, and G-independence
in abelian groups to quasi-linear algebras defined in [3] (Theorem 14 and
Corollary 28, Theorems 15 and 16). In this algebras Ind(R) = Ind(M).

In Chapter IV we consider some reducts of Boolean algebras, called
here regular. We obtain in this way a generalization of Marczewski’s
Theorems on M-independence in Boolean algebras and some of their
reducts (Theorem 19), and we come to conclusion that S-, S,- and M-in-
dependence coincide for subsets with at least two elements in regular
reducts (Theorem 20). Finally, we characterize also the G-independence
(Theorem 21) and A,-independence (Theorem 22) in those reducts. Moreover
in the same reduct the R-independence is equivalent to M-independence
(Theorem. 23).

We pose also some problems, the answer to which is not known to the
author (Problems 1-6).

This investigation and a part of the theorems obtained here arose
from questions posed to me by Professor E. Marczewski in the years
1967 and 1968(*).

I wish to express my sincere thanks to Professor Marczewski for his
patient guidance of my work. I wish to thank lnm, and also Dr 8. Fajtlo-
wicz, for numerouns discussions and remarks which greatly influenced thig

paper.

I. INDEPENDENCE WITH RESPECT TO A GIVEN FAMILY
OF MAPPINGS (GENERAL PROPERTIES)

§ 1. Notations and main definitions

In this paper we adopt the definitions and notations given by Pro-
fessor B. Marczewski in [13] and [17]. By an algebra U we shall mean
a pair A = (A; F), where A is a non-empty set (we call it the support of
A) and F is a class of fundamental operations consisting of 4-valued fune-
tions of several variables running over A. We denote by A the class of
all algebraic operations i. e. the smallest class containing #rivial opera-
tions

(n)(‘vl’ vy By) =By (f=1,2,...,m;n = 1,2, bes)

(*) T].us paper is a doctoral thesis which was presented to the Faculty of Mathe-
matics, Physics and Chemistry of the Wroclaw University at 27% May 1969,
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and closed under the composition with the fundamental operations.
‘We write A() to make clear that we consider the algebraic operations
of the algebra ¥%. Two algebras W; = (4; F,) and A, = (A; F;) with the
same support and having the same class of algebraic operations will be
treated here as identical; if A(;) = A(W,) then A, i8 called a reduct of
UA,. By A™ (or A™ (%)) we denote the subelass of the class A of all n-ary
algebraic operations. By the algebra of n-ary algebraic operations of a glven
algebra %A we mean U™ = (A™ F) with fundamental operations f ¢F
induced by fundamental operations fe I of algebra U in the following way:

if feF is m-ary then f ¢F is defined by the formula:
(f(}ls "'?jm))(wli A wn) =f(f1(w13 ) mvn)a "')fm(.wly A mn))i‘

where @, ..., 2,eA oraz fi,..., [, cA™.

By AY.= C(@) we denote the class of constant algebraic operations
of algebra U as well as their values. Further for I' < 4 let C(T) be the
smallest set containing 7' such that-the values of any algebraic operation
of % run over C(T) whenever the variables are in C(T). The pair (C(T);
F| C(T)) forms a subalgebra of A i. e. C(T) is closed under restristions of
operations from F to C(T). If C(@) is non-empty it is a least subalgebra.
The operator € which carries the set 7' into C(T)-is extensive, monotone
and idempotent so it is a generalized closure operator (comp. [1], p. 49 and
[15]). This operator has an additional property — it is of finite character
i.e. for any T < A the set C(T) is the sum of C(F) where F runs over
all finite subsets of 7. We shall call C an algebraic closure.

Suppose there is a generalized closure operator D of finite character
-on the family 2 of all subsets of A. Then the algebra U = (4; 4) with
all algebraic operations fed satisfying the condition

f(a’l) seey a’n)ED(ah ceey an)?

yields the realization of the given generalized closure D,i.e. D(T) = C(T)
for any T < A. ,

A set Ic A is called C-independent if a¢C(IN{a}) for any ael.
The family of all C-independent set of algebra % will be denoted by
C-Ind() (or shortly C-Ind).

- A set I c A is called M-independent it for any system of different
elements a,, ... a,eI and for any pair operations f, geA" the equality

(1) flayy ... a,) = (G5 ..y Q)

implies f = ¢ in U. The last notion was called simply “independence” in
earlier papers (see [13]). The family of all M-independent set of algebra
U will be denoted by Ind (%, M) (or shortly Ind (M)).

A family J < 24 is said to be of finite character if for subset T < A, Ted
whenever any finite subset ' = T is in J. A family J is hereditary if each



I. Independonce with respect to a given family of mappings 9

subset of a member of J is in J too. For instance the families Ind(M)
and C-Ind are of finite character and hereditary. Also the family of
C-closed subsets of U is of finite character (but it is not hereditary).

Finally let M(A) (or shortly M) denote the family of all mappings
p: T—~A from any T < A, i.e. M(A) = {p: pecA”, T c A}. Further
H(A) (shortly H) will denote the set of such mappings p: T — A (for
T cA) which posses an extension to a homomorphisms #: C(T) — A.

A more detailed discussion of the above notions may be fond in the
cited literature first of all in papers of Marczewski [13] and [16].

§ 2, Notions of independence defined by families of mappings
(Q-independence) |

Professor I&. Marczewski observed that several independence notions
weaker than M-independence fall under a common scheme (together
with M-independence), see [16], p. 173. He proposed in [17] the following
definition: ’

Let Q « M(A). A set I = A will be said independent with respect o
the family Q or, shortly, Q-independent (in the algebra ), if

O nAlc HY).

We use then notation IeInd(¥, Q) or Ie<Ind(Q).

Let an algebra U = (4 ; F) be given. It is know from [13] and [17]:

THROREM (Marczewski [17]). The following conditions are equivalent:
(a) I<Ind(Q),

(b) forevery peQ n Alifay,..., 8y nel, feA™, ge A™ (m,n =1,2,...)
and f(@y; ..y @y) = §(Gui1y -y Gyn)y then

f(p (a'l) y ey P (a’m)) = .(/(.'p (a'm+1); ey P (a'm+u)))

(¢) for every peQ n AT if ay,...,a,el, f,geA™ (n =1,2,...) and
(1), then

(2) fp(ay), ..., (@) = g(p(a), -, P(@,),

(d) for cvery peQ n AT if ay, ..., @, are different elements of I, f, g A™
(n=1,2,...) and (1), then (2).
It is worthwhile to remark that
(i) For every Q,, Qs = M the following conditions are equivalent:

(e) Ind(Q,) c Ind(Q,),
(£) for ‘every T < A if AT A Q,c H then A" n Q. c H,
(8) mdQ, = md(Q,u Q).
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From the equivalence of (e) and (f) we conclude immediately

(i) ((L70). If O, = Q, = M, then Ind(Q,) c Ind(Q,).

Recall for completeness the following properties (see [17]):

(iil) For every Q c M

Ind(M) = Ind(Q) = Ind(H) = 24,

(iv) Lei‘ Q c M and let for every UcT c A and every peQ n AV
there exists qeQ n AT such that ¢| U = p. Then the family Ind(Q) is he-
reditary. -

(v) Let Q « M and let for every Uc T < A be q|UeQ for arbitrary
qeQ n AT. Then the family Ind(Q) has finite character.

It i3 easy to check, that

(vi) For an arbitrary set of families Q, = M (teT) we have

N Ind(Q) = Ind(UJ Q), U Ind(Q) = Ind(") Q).
tel’ tel LeT tel

Since

(vii) TeInd(Q) if and only if IeInd(Q u H),
we may suppose for convenience, without loss of generality, that H < Q.

Observe

(viil) If ceC(@) nI %O and there exisis peQ n AT such that p (o)
# ¢ then I¢Ind(Q). )

In fact, we have e{(c) =c(c) and &(p(c)) # ¢(p(c)), Wwhere c¢()
stands for the constant algebraic operation with value ¢. Thus I cannot
be Q-independent. m

If we put Q = M, we obtain M-independence introduced and called
“independence” by E. Marczewski in 1958 (see [11] and [13]).

If we put Q =8 = {p: peO(T)¥, T <« A} we obtain S-independence
introduced by J. Schmidt in [20].

However, if we put Q = S; = {p: peI?, T = A}, we obtain S,-inde-
pendence introduced by 8. Swierczkowski in [21].

Another notions of independence may be obtained putting Q = 4,.
={fIT;feAV, T c A).

From (ii) we conclude

(ix) Ind(M) c Ind(S) = Ind(S,) ([17]), and Ind(S) c Ind(A,).

It is easy to see, that

(x) A single-point set {a} is S-independent iff it s A,-independence.

We shall call an algebra weakly commuiative, it any algebraic operation
of one variable is a homomorphism i. e. for any feA™, ge AV the equality

f(g(m1)7 -'-’g(mn)) = g(f(mla "'5mn))

holds for arbitrary @y, ..., z,¢4.
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Such algebras are, for instance, linear spaces, abelian groups (more
generally so-called commutative algebras; [10], p. 32), and idempotent
algebras. There is |C(@)| <1 in weakly commutative algebras.

Moreover

(xi) In the algebra W every subset of A is A,-independent iff W is weakly
commutative.

The sufficiency, in fact, is clear. Let now every subset of % be A4,-in-
dependent. In virtue of A,-independence of 4, the equality z, = f(z,, ...
vivy@y)y Where @, By, ..., Byed, fed™, implies g(a,) = f(g(ml)i coes 9(@y)
for every ge A", Thus g is homomorphism of U into itself. m

From (viii) get easily

(xii) If InC(@) #O and |I|=2 (|C(D)=2), then I¢Ind(S,)
(I¢Ind(A,), resp.). m

For a discussion one more notion of indeperdence, we.define a certain
family of mappings.

A mapping p: T - A, where T c 4, is called diminishing if for every
fogedA" and for each aeT the equality f(a) = g(a) implies f(p(a)
= g(p(a)). |

Evidently, if I is Q-independent, then every mapping peQ n AT is
diminighing. Also we have

(xiii) ([17]). {a}eInd(Q) iff every mapping p: a — A belonging o Q
8 diminishing.

Hence we conclude

(xiv) If there are no M-self-dependent elements in U (in pariicular this
is in the case of idempotent algebras) then every one-point set is Q-independent,
for every Q = M. In an algebra with only one constant ¢ (C(@) = {c}) the
st {c} is S-independent; moreover, if there are no other than ¢ M-self-depen-
dent elements, then every one-point set is S-independent.

It is easy to see, that.

(xv) If the algebra U contains only one algebraic constant ¢ then mappings
P1, P2t T — C(T) defined below:

( ) a:g, if r = ao’ . (w) c_} ?:f L = a’ﬂ’
4 = — ,
P ¢, if ® F ay, Pe z, if & # a,.

(for a fized a,eC(T)) are diminishing.

(xvi) In the arbitrary algebra W the diminishing mapping p: T — A
(T = A) preserves every algebraic constani. If, moreover, T = A does ot
contain non-constant M-self-dependent elements then every mapping T —A
(T < A) preserving all algebraic constants (in T) s diminishing.
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Put Q = G — the family of all diminishing mappings, then the
Q-independence becomes the G-independence introduced by G. Graetzer
in [8] (see also [17].

From (xvi) we conclude that in algebras without M-self-dependent
elements (and so without constants) we have Ind(G) = Ind(M).

Bearing in mind (iv) and (v) we easily obtain

(xvii) (comp. [17]). The families Ind(S,), Ind(8S), Ind(G) and Ind(A,)
are hereditary, and the families Ind(G) and Ind(A;) are of finite character. m

Now we prove

(xviii) A subset I ¢ A is G-independent in the algebra iff for every
subset B c C(Q) the set I u B is G-independent 1 .

Indeed, let I be a G-independent set, B = C(0) and

Fl@yy ooy gy Cry ooy Cp) = G(Bryovey Bpy Cryvvny C)

where ay, ..., agel, ¢y ..., ¢peB, f, ge A¥™), Define the algebraic operation
fos goe AW in the following manner:

Jol@yy ooy @) = f@g, ooy Ty €1y .00y G),
Gol@ry ooy Bp) = G(@ry oony py Cry oony Cy)

for every #,, ..., #,¢ 4. From G-independence of I we get

fo(P(“1)5 ---’P(ak)) = gO(P(.“l)) ceey .’p(a’k))

for every diminishing mapping p. Hence because of the definition of f,
and g, and in view of (xvi) we get

f(p(al)s ooy D(ag), pley), '-';p("m)) = .‘/(p(al); ---',]9(11;@),]9(01), '--sr_(am))

for any diminishing mapping p: I U B — 4. Thus I u B is G-indepen-
dent.

The convers implication is obvious (put B = @). u

In particular, we conclude, that G-independence of a subset I < A
doesn’t imply it’s C-independence. This result was obtained by another
way by Graetzer (see [8], p. 233).

Finally, let us define R-independence putting for Q the family R of all
injective mappings.

Note that (in view of (v)) that the family Ind(R) is of finite character.
At once (viil) implies that an algebraic constant cannot belong to an
R-independent set whenever the support of % has at least two elements.

Further we have

(xix) If IeInd(M), JecInd(R) in the algebra U and |I| = |J| then
JeInd (M)

In' fafzt, it suffices to consider the case when |I| = |J| because of
hereditarity of Ind(M). Let us suppose ay, ..., a, be different elements
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from J and f, ge A™(A), pe A7 A Rand (1) holds. Considering the bijective
mapping ¢: J — I and making use of R-independence of J we get

f(g(al)a e Q(a'n)) = g(Q(al): vy Q(a'n));

where g(a;)el (1 =1, ... n). From M-independence of I the last equality
gives
flwo g M g@), -, (90 g7 (g(a))

= g(po g™ (g(@), ..., (p o g7 (a(an)),

which leads to (2), whence J is R-independent. m

§ 3. Maximal families of mappings for given independence

In consideration of this paragraph the algebra U = (4; F) be fixed
(except Corollaries 4 and- b).
From (vi) it follows easily, that for every family Q « M(4) = (J AT

(= M) there exists the greatest family Q of mappings such that Ted
Ind(Q) = Ind(Q).

A family @ sueh that Q = Q shortly will be called mazimal.
Now we prove ‘
TuwoREM 1. For every family J of subsets of A such that
(3) Ind(M)c J c 24
there exists a family of mappings Q ¢ M satisfying the equality
(4) Ind(Q) = J.

Moreover the mapping Q — Ind(Q) is an anti-isomorphism of the algebra.
U of all mazimal families Q = M of mappings defined on W with set-theoretio
join and meet and complementation defined by ihe equality

(5) Q' = (M\Q) U H,

and the Boolean algebra of all subsets of 2\ Ind(M).

‘Proof. Following the idea of S. Fajtlowicz of the proof of Corollary 3
(which will be a consequence of our Theorem) we define for J satisfying
(3) a family Q of mappings by putting

AT~ Q = AT, it T4d,
and
ATn Q =Hn AT, it Ted.
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Hence we obtain that J « Ind(Q). Now if T'¢.J then T is an M-dependent
set (from (3)). Thus there exists a mapping p: T — A which is not exten-
dible to a homomorphism from, C(T) into A. This mapping belongs, in
view of our definition, to the family Q and so T is Q-dependent. This
ends the proof of first part of Theorem 1. (It is worth to remark that the
above constructed family @ is maximal).

Tt is clear that the family Q' define by (5) is also maximal whenever
a family Q is maximal. Taking under consideration (vi) we observe that
to every family of subsets J with property (3) there coresponds a one-to-
one manner a family Q giving the equality (4). It is easy to verify that
the mapping Q — Ind(Q) gives the mentioned isomorphism, because
the equivalence

0, < 0, = Ind(Q;) > Ind(Qy)

holds for maximal families Q, and Q, m
1t is worth to observe that the second part of Theorem 1 mey be deduced
from more general considerations dealing with certain mappings of direct
sums of complete Boolean algebras {4,}, indexed by a set V, into 2v,
Finally observe that the conditions

Hn Q =0,
ATnQ=G, jfTEJ’
4T @ n (MN\NH)| =1, it T¢dJ,

determine (not uniquély) minimal families (of mappings) satisfying (4)
(where J satisfies (3)).

From the second part of Theorem 1 we deduce

COROLLARY 1. The set Q of all maximal families Q = M of mappings
defined on A with set-theoretic join and meet operations and complemeniation
Q — Q' defined by (5) is a complete atomic Boolean algebra. A family
0 Q) is an atom of this algebra iff there ewists a unique set T ¢ Ind (M), such
that AT Q. m

However from the first part of Theorem 1 we deduce simply corollaries.

CoROLLARY 2 (8. Fajtlowicz). For arbitrary family J < 24 there exists
a subfamily Q ¢ M(A) and an algebra N = (A; F) such that (4) holds.

Indeed, it suffices to observe that Ind(M) = @ in the functionally
complete algebra on the set 4. m

Putting in Theorem 1 J = C-Ind we get an answer to a question
raised to me by Professor E. Marczewski, and obtained earlier in another
way (see Chapter IT, § 6, remark to Theorem 10);

COROLLARY 3. For every algebra W = (A; F) there exists a family of
mappings Q ¢ M(A) such that

(6) C—Ind = Ind(Q). m
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If D is a generalized closure operator of finite character on 24, deduced
from Corollary 3 we get a corollary for the algebra which yields the reali-
zation of this closure operator (see § 1).

CoROLLARY 4. (8. Fajtlowicz). For every generalized closure operator
D of finite characier given on 24, there exists an algebra W = (A; F) and
a family of mappings Q < M( A) such that for any T < A the subalgebra
generated by T is equal to D(T) and the equality (6) holds. m

Let Q « M(4). By an analogy to the property »* investigated by
severa.l author ([18] and [24]) we shall say that an algebra ¥ has the property
g if the following conditions are satisfied
(*) every Q-dependent element of A is an algebraic constant,

(**) if the set {ay, ..., ay} (n=>1) is Q-independent and the set {a,,..
vy Oy Oy y 1} 38 Q-dependent then a, ., <C({a,, ..., a,n})

An algebra Y satisfies (*) and (**) iff the equality (6) holds for @ = M(A)
and the C-closure has the exchange property (comp. [24], p. 235):
(***) if a¢C(T) and a<C(T U {b}), then beC(T v {a}) (T < 4).

Using the last corollary we get

CoROLLARY 5. For every generalized closure operator D of finite character
given on 24 and fulfilling (***) there exist an algebra W = (A; F) and a fa-
mily of mappings Q <« M(A) such that the algebraic closure is equal D and
the algebra A has the property v} w

It is worth to remark, that from the definition of the operation Q — Q
we have immediately the following properties:

(7) ATA Qc HeATn Q c H,
(8) " OHNATZATc Qe (Qn ATNH =0
for T < A.

Thus this operation is uniquely determined by the family H. Moreover
a8 o direct consequence (7) and (8) we get:

(9) g =H=~H,

(10) Q< 0,

(11) 0 =(0),

(12) U Q»; = Qw
ieJ ied

(13) NQ =" Q:,
ied ted

Therefore the operation O\H — Q\H, where Q = M(A4), is a topo-
logical closure on M\ H (as defined by Kuratowski). However the topo-
logy obtained by this way is not interesting, since it is even not a Tl-to-
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pology, on generality. If it is the fact then there would be Q\NH = O\H
for every Q = M, and hence the algebra A = (4; F) would have to e
strongly homogeneous i.e. one of the two-element algebras defined by
Post (see [14]) or the trivial algebra.

Tt would be interesting to know the answer for the following (probably
difficult)

PrOBLEM 1. In a fized set A the generalized closure D: 24 — 24 is
given. Let H <= M(A) and further let the familly H fulfills following conditions:
(8) ifpeHn AV geH o AT and ¢(T) < U, then pogeHn AT,

(b) epeH O AT, where eq is an identical mapping on T.
Moreover for arbitrary T < A let this family be associated with the operator
D by the following way:
¢) for every peHn AP™) ‘
p(D(T)) = D(p(T)),

(d) for every peH n AT there exists Be Hn APT) such that Plp = p
Does (or: under which additional assumptions) there exist an algebra A
with a support A such that H(W) = H and D = C (where C is the algebraic
closure) ?
(It is worth to note, that from conditions (a) and (b) it follows easily
that: if peHn AV and T c U then 'p|peH n A7)
In the second paragraph we quote certain conditions obtained by
E. Marczewski in [17] sufficient for the family Ind(Q) to be hereditary
or of finite character (see (iv) and (v)). Using the maximal families of
mappings we present now necessary and sufficient conditions for here-
ditary and finite character of the family Ind(Q).
Taking into account (8) and the definition of Q- mdependence 11; 18
easy to verify that following holds
THEOREM 2. For the family Q < M the following conditions are equivalent:
(¢) The family Ind(Q) is hereditary. |
(B) For every subset Tc A if ATn Q c II then AV Q c H for an
arbitrary subset U < T.
(v) If U¢Ind(M) and AV < Q then AT c Q for every T > U.
(3) If AT Q' for T < A, then AU < Q' for every subset U of T (where
Q' is defined by (5)).
We have also the following equivalences.
TrEOREM 3. For the family Q <= M the following conditions are equivalent:
() The family Ind(Q) is of finite character.
() For every subset T <= A, Q n A" = H whenever for all finite subsets
UcT the following holds Q n AV < H.
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(n) If AT = Q for T¢Ind(M) (T < A), then there exists a finite subset
UcT such that AY < Q and Uq¢Ind(M).

Proof. The equivalence of conditions (¢) and (%) follows easily from
the definitions of Q-independence and finite character of Id(Q) (cp.
§1). It is sufficient to establish the equivalence of conditions () and ().

If the family Ind(Q) is of finite character and if for 7 <« 4 we have
T¢Ind(M) and AT < 'Q, then T¢Ind(Q) = Ind((Q). Thus there exists
a finite subset U = T such that U¢Ind(Q). Therefore, from (i), we get:
U¢Ind(M). Fma]ly, in virtue of construction of the family @ (see (8)),
we have AV = 0.

Conversely, let UeInd(Q) for every finite subset U c T < A. Then,
from the definition of the family @, we have A”A § < H for every finite
subset U = T. Hence either UcInd(M) or A” ¢ Q. Therefore by con-
_ traposition of condition (v) we ‘get either T <Ind(M) or A" ¢ @, which
yields TeInd(Q) = Ind(Q). =

It is easy to remark, that the condition (») for the family Q' is following
from the condition (3). For, if UeInd(M) for every finite subset U < T,
then also T eInd(M) because the family Ind(M) is of finite character.
We have therefore

COROLLARY 6. If the famzly Ind(Q) is hereditary, then the family Ind (0 )
is of finite character.

‘Taking into account (8) and equivalence of conditions («) and (y),
and equivalence of conditions () and (v) for the family Ind(Q) we get

OOROLLARY 7. If the families Ind(Q,) for ied are hereditary (or of
finite character), then the families

In‘d(_UJQi) and Ind(()@i)
Le 1¢

are also hereditary (or of fimite character, resp.). m

§ 4. O-independent sets of generators (Q-bases)

Now we shall prove a certain results for Q-independence, which
are analogous to respective theorems for M-independence concerning
M-bases of different cardinality.

In this paragraph firstly we shall try to find for an algebra % a necessary
and sufficient condition (under certain additional conditions about the
family Q) in order that % has an n-element Q-basis. This result will be
therefore the generalization of the Theorem 1 in [6] well-known for the
M-independence.

To this aim we introduce celta.m relation in the set of n-ary algebraic
operations, which, under the later specified assumptions about the family

Q, will be the equivalence relatior
2 — Dissertationes Mathematicae LXX Vg
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Namely, we shall say that the operations f, geA™ () ave eqm’mlem
with ws:pect to the family Q < M (in short: are in relation ~g; then we
write f ~yg g, or, if there could be no misunderstanding, snnply f~g9)
if the following conditions are fulfielled:

(«) there emists Q-independent subset I of the algebra A and there exist
different elements @y, ..., @, eI such that the equality

(1) f(a’li i) a"n. = g(a‘lf ") a’n)
lolds,
8) for every ai least n-element subset T = A if the equality

(1) Fbryeoey by) = g(byy ey ba)
holds for arbitrary different elements by, ..., b, T, then for all p ed” N Q

(2%) f(.’p (b1)y.ee) p(bn)) =g (P (bg)y ey (bu))
is walid.
Obviously, if for every f, ge A™ and certain different a,, ..., a,eA the
equality (1) implies f ~gq g, then {ay,...,a,}cInd(Q).
In considerations of this paragraph we shall assume about the family
Q that for certain (or all) » this family Q satisfies the condition

(vn) for every atleast n-element subset T < A and for every different ay, ..., a,
eT and different by, ..., b,eA there exists a mapping peAT nQ
such that

(14) pla) =b; fori=1,2,...,n

It is worth to note, that in our considerations it is always sufficient
to take a weaker condition (y,) which is obtained from (y,) if we restrict
ourselves to subsets T eInd(Q).

The condition (v,) can be often replace for appropriately chosed at
least: m-element set IeInd(Q) by the still weaker condition

(Yn1) for every different ay, ..., a,eI and for arbitrary different by, ..., b,
eAd there ewists ped’ nQ satisfying (14).

Note, that the condition (y,) is fulfilled if the family of mappings
Q contains a family R consisting of all injective mappings. Since for many
algebras (e. g. for linear spaces, abelian groups and Boolean algebras)
R-independence coincides with M-independence, hence will' be worthy
to give some simple examples of algebras for which it is not so.

Consider an algebra ({a, b};f), where f is unary operation defined by
putting f(») # . Taking into account that f(f (#)) = x, one easy verifies
that the set {a, b} is R-independent, this set is not M-independent as it
is C-dependent. .

One can give also an example of an algebra ¥ such that for every =
there exists an R-independent n-element set (which we shall assume in
Theorem 8) and Ind(N, R) # Ind(A, M).
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For_exa.mple in algebra (4: {I,;n =2, 3,...}), where 4 is an in:finit.e
set and the operations I, are defined in the following way:
@, if m,..., s, are different,

(1, o0y 0,) = . |
©, if a,,...,, are not different,

every subset of the set A is R-independent whereas only one-element
sets are M-independent. | ,
From the definition of the relation ~, we get immediately -

Lemma 1. If the family Q « M satisfied the condition (v,)(Y) and
f ~q g, then equality (1) is satisfied for every different ay, ..., a,cA. m

We shall prove now the fundamental lemma:

LeEMMA 2. If the family Q satisfies (v,), then the relation ~gq 18 a con-
gruence relation in the algebra A™.

Indeed, even without any assumption about the family Q this relation
is evidently reflexive and symmetric. If f ~¢ and ¢ ~h, then there
exist different elements a,, ..., a, and different elements b,, ..., b, from °
the Q-independent subsets I, and I,, respectively, such that the equali-
ties (1) and

g(bU seey bn) = h(.bli ceny bn)

hold. If now for any elements ¢, ..., c,eT = A the equality

f(ey ..oy ) = h{Cyy ...y 0),

holds, then, in virtue of Lemma 1, we have f(c;, ..., ¢,) =gy, ..., ¢,)
= h(ey, ..., ¢,), hence by (B) we get

flp(e)y -y p(e)) = g(p(ed); ..oy p(6)) = h(p(ea), ...y (cy))

for every pe AT n Q. We have the proof then that ~ is an equivalence
relation. Further, let f;, g;e AP M@ =1,2,...,m), FeA™ (A™) and
let f; ~ g, Then, by virtue of Lemma 1, there exist different elements
@, ..., @, belonging to a certain Q-independent set I, such that

fildny ooy @) = gol@ny ooy ) for every @ =1,...,m.
We have now

(f(fl’ "')fm))(a'ly L a’n) =f(f1(a’17 e a’ﬂ)’ ""fm(a‘u vy a"n.).’)
=f(91(a1, oy @)y ey OBy oy a‘n))
= (f(gu-'“’ Gm))(a'n oy )

Finally, if for any different b, ..., b,eT = A the equality
(s oeer o)) (Bry evs Ba) = (F (g1 -0y ) (Bry ooey By)

() Hero the condition (y,) can be replaced by the condition (y,,1), where I ia
& Q-independent set of condition - ().
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ﬁolds, then taking into consideration Lemma 1, also f;(bs,...,b,)
= gy(byy ..., by) for 4 =1, ..., m. Hence by (8) for every pc4A” n Q we
haive fy( (bs) - 2(0a)) = 6P (21, ..., P (By)), and we -get

(F Fay oo T (P O2)5 oy 2(80) = (F 915 -0y g)) ((B1), -5 B(BR)).

We have proved therefore the equivalence f(fy, ..., fn) ~ Flay ey gm)
Thus ~ is a congruence relation in A™. m

We shall denote by U™/~ a factor algebra obtained from U™ by
dividing by this congruence relation. The coset of algebraic operation
fe A™ with respect to the relation ~ will be denoted by [fl., or shortly
[f1 (if it will not lead to misunderstanding); and the by symbol g — m-ary
operation in the algebra A™/~ induced by the operation §eA™ (in
D) (OIS . )

)We shall say that the subset I of the set 4 is a Q-basis of an algebra
9, if T is Q-independent set of generators of .

Obviously, S-basis is simultanously the M-independent set, hence
is also the M-basis.

We shall prove the theorem, which is a generalization of the Theorem
1 of [6]. To this aim we put an additional condition on the family Q:
(8,) If U={ay,...,0,}cs4,b,...,b, are different elemenis of an

arbitrary subsets T < A, a mapping peAY n Q satisfies (14) and
geAT n Q, then the superposition go p belongs to AV n Q.

Frequently, if (y, ;) holds for I = {a,,...,a,}eInd(Q), then taking
U = I the condition (3,) can be replaced by a weaker cendition, which
we shall denote in the following by (3, ;).

One should note also that the conditions (y,) and (8,) are satisfied if
for example, Q = R.

Let us verify the following

LeEMMA 3. If a family Q defined on the algebra U satisfies the conditions
(Ya) and (8,)(2), then the condition (B), occuring in the definition of ~gy
follows from (o).

In fact, if for a,,...,a,eIeInd(Q) the equality (1) holds, and for
some different by,...,5,¢T < A the equality (1') is satisfied, then in
virtue of (y,) and (3,) there exists a mapping peA n Q fulfilling (14),
such that go pe A’ n Q for every ge AT n Q. Therefore, in view of. Q-inde-
pendence of the set I, we get

f(Q(b1)1 ) Q(bn)) =f((q o P)(ay), ..., (g0 P)(an))
=9g(@@o p)(a1), ...y (g0 D) (@) = g(a(bs), ..., q(b,)).
Thus the condition (B) is satisfied. m |

(*) Assumptions (y,) and (8,) can be replaced by weaker conditions (y, ) and
(82,1), where I is a Q-independent set of condition ().
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Due to Lemma 3 and condition (y,) we have imlnedla.tely.

COROLLARY 8. Let f, ge A™, the family Q < M(A4) sa,msfws the condi-
tions (y,) and (8,), and let I = {a1y ..., a,} eImd (Q) (). Then f~giff
the equahty (1) is satisfied. m

It is worth to remark, that, by the assumptions (v») and (8,) about
the family @ defined on the algebra %, the fact that ~y, is the congruenge
-relation in the algebra A™ can be deduced from the following simple
observation.

Let X < A" and let a relation ~y on A™ be defined by taking

J ~x ¢ iif for any n-tuple elements a, ..., a, the equality (1) holds.

Then ~y is the congruence relation in A™.

Indeed, from the conditions (v,) and (3,) satisfied by Q (or from - (v, ;)
and (8, ) if in the algebra there exists an appropriate set I) it follows
easily, by Lemma 3, that the relation ~g, coincides with ~y for X being
the set of sequences with « different elements.

Taking into account Lemmas 2 and 3 we have

THEOREM 4. Let a family Q « M(A) defined on an algebra W satisfies
the conditions (vy,) and (8,)(%). Then A has an n- element Q-basis if and only
if A is isomorphic to AM,

Proof. Let I = {a,,...,a,} be a Q-basis. of ‘A and let aeA. Then
there is an f,eA™, such that
(15) @ =fa(a1, ceey a-’n)-

If a =f(a;,...,a,) for some feA™, then f~f, by Corollary 8.
Thus the element aecA determines uniquely an element of UM /~.
Define a mapping h: A — A™ |~ by h(a) = [f,], where f, satisfies (15).
If k(a) = h(b), then in consequence of the guoted Corollary we have
fal@yy ..oy @) = fi(ay, ..., a,), whence a = b. It means that & is a injection
of A into A™[~. Obviously, it is even a surjection: if feA™, then
flay,y ..., 8,) = bed, and so there is bed, such that i(d) = [f]. Now let
us prove that A is homomorphism. For arbitrary #,, ..., #,<A there exist
fiy ooy fped™ such that @; = fi(ay, ..., a,); in other words h(=z;) = [f;]
for i = 1,..., p. From the definition of # and Lemma 2 we obtain

h(f(mn ""mp)) = j‘(f(f1(a1; )y - -;.fp(“u ceny a’n)))
"‘h(f(fl,- !fp (an"-,a‘n)) =[f(f1""’fp)]
=F ALy o ) =F (R(21), -5 Bl2y))

for every feA®. Thus A ~ A™/~.

(*) Instead of (y,) and (8,) we can make woaker agsumptions (y,7) and (3y,1).
() See footnote (2).
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Conversely, let U be isomorphic to U™ /~, and t: A™ [~ — 4 yields
this isomorphism. The trivial operation ¢, ..., ¢ form an M-basis
of algebra %™, and so the elements [¢™],..., [€'] form a generating
system of AM™ | ~. It is clear that ¢ is not ~-equivalent with any opera-
tion " for ¢ # j. For suppose

(16) 6" (byy o0y b,) = 3§n)(b1’ ceey by)s

for some by, ..., b,eA, then b; = b;, so there are no sets IeInd(UA, Q),
such that for any different b,, ..., b, eI the equality (16) holds. In con-
sequence, the condition («) does not holds. Thus [¢{™], ..., [é!M] are diffe-
rent elements of A™/~. Now we shaw that the set J = {t[¢{"]; ¢ =1,...
..., n} i3 Q-independent. Let f, g be arbitrary n-ary algebraic operations.
I fele™]y .. t[e)]) = g(2[ef], ..., t[e8]), then f([ef™],..., [M])
=G ("], ..., () thus fef?,...,el)) ~g(ef”, ..., é"). Hence we
obtain easily f ~ g, Taking account of (f) we observe JeInd(Q). There-
fore J is an n-element Q-basis of the algebra A. m

COROLLARY 9. If the family Q = M(A) defined on an algebra WA contains
the family R of all injective mappings and satisfies (8,), then A has an n-ele-
ment Q-basis if and only if W is isomorphic to QI(")INQ. ]

- CorOLLARY 10. U has an n-element R-basis iff W is isomorphic to

m(u) / ~gp. W

Now we prove a theorem analogous to Theorem 2 of [6].

THEOREM 5. If A has an n-clement Q-basis and an m-element Q-basis,
and the family Q = M(A) satisfies (v,,) and (8;) for k = n, m(®), then there
exist algebraic operations fi,...,f,eA™ and g, ..., ¢, ¢A™ such that

(17) fi(gI) ) gm.) N"gl’) 7'”‘ Q[(")(q: = 1? A '}’b),
(13) ﬂj(fu ""fn) ~ ;-m) mn QI("I)(j = 15 tey m’)'

Proof. Let - I, ={ay,...,a} and I,={b;,...,b,} are Q-bases
of A. Then there are fi, ..., f,«¢A™ and g,, ..., g,, e A™, such. that

(19) 0 =filbyy ooy bp)y 1=1,..., n,
(20) by = gi(@13...,a,), j=1,...,m.
We get \
(21) fi(gl(a’ii"‘aa’n):"')gm(ali""a’n)) =a;, 1=1,...,mn,
(22) Gi(F1(ouy ooy by)y ooy fulbyy oy b)) = by, G =1, ..., m.

Whence we obtain (17) and (18) in virtue of Lemma 3. m

() The theorom rewmains valid when the algebra 9 and the family Q satisfy the con-

ditious.(yn,zl), (3a, Il) and (Y"!Jz)' (3m,12) where I, I, are n-, and m-element Q-bases,
respectively.
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In the special cases of Q = M or Q = R the assumptions of Theorem
6 are fulfilled. Since every S-basis is also an M-Dbasis we obtain a theorem
for S-independence like the precedlng theorem.

Now we prove

LeMMA 4. Let I be a Q-independent subst of an algebra W, andleth yOhiyerey Oy
be different elements, all of them, probably except b, belonging to I. It tha
family @ < M(A) satisfios (v,)(%), then a,¢C({ay, ..., a,}).

Indeed, if there would exist an operation feA® " guch that

Ay =f(a’2! vy a’n);

then considering the mapping p defined by

pla) =0b, pla) = ay, 7-'22;"-1'"'_;

which belongs to 47 n Q in view (y,), we would deduced (using of Q-in-
~dependence of I) 4, = b counfrary to owr assumptions. m

Hence we obtain immediately

COROLLARY 11. If a family Q = M(A) satisfies (v,,,) and I = {a,, ..., a,}
18 @ Q-basis of an algebra W with |A| = n+2, then I is-a mavimal Q-in-
dependent set. m

 COROLLARY 12. If a family Q <« M(A) satisfies (v,,) for every n, and I

i8 an arbitrary Q-basis of an algebra W with an infinite support A, then I
i a maximal Q-independent set. ®

Using Lemma 4 we have also

THEOREM 6. Let A be algebra with an infinite support A, and let a family
Q c M(A) satisfies (vy,) for every n. Then Ind(Q) < C-Ind. m

Proof. Suppose, on the contrary, that I eInd(Q) and I is C-dependent
set. Thus there exists an element ae¢l, such that aeC(I\{a}). Since the
operator C is of finite character (comp. §1) there is a finite subset {¢y,..., a,}
c IN{a}, such that ae¢C({a,,..., a,}), which is imposible because of
Lemma 4, for an infinite set 4: m

In particular

CoROLLARY 13. If U is an algebra with an infinite support and R < Q,
then Ind(Q) = C-Ind, in the algbera A m

Let us observe, that if Ind(Q) c C-Ind in the algebra %, then every
Q-basis is a minimal generating system of %, Thus if Q, defined on U,
satisfies (y,) for every =, then every Q-basis is a minimal generating
system and a maximal Q-independent set. This is not true for arbitrary
family @Q, for instance: an arbitrary algebraic constant may be added
to any G-basis.

(*) Wo oan assumo (yg,7) instoad of (vy).
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From Theorem 1.3 (iv) of [13] and the implication: if 2 family Q
satisfies (vy,) for all », then a Q-basis is a minimal generating system,
we get

CorROLLARY 14. Let a family Q c M(A) satisfies the condition (vy,)
for all m, and let an algebra U has an finite Q-basis. Then all Q-bases of A

‘are of the same cardinality. m

Tt is worth to remark, that is not true for G-independence. Consider
an. algebra % in which every element from its infinite support 4 is an
algebraic constant. Then, in virtue of (xviii) and Theorem 3(iii) of [17],
every subset of A is a G-basis of 91, so there exist a finite and an infinite
G-bases. Note that 8. Fajtlowicz has shown an algebra % without algebraic
constants with the above property (this is answers to problem P 603
possed by G. Graetzer in [8]).

Now we prove a theorem analogous to Theorem 2.4 (iii) of [13] using
a gimilar method.

THEOREM 7. (a). If ‘a family Q = M(A) satisfies the condition (y,)
and sets Iy = {@y, ..., a,}, I, = {by, ..., b} are Q-independent in the algebra
A, then C(I,) = C(I,).

(b). If a family Q = M(A) contains the family R of all injective mappings
defined on the subsets of the algebra U, and Q- independent subsets I, and I,
have the same cardinality, then the subalgebras generated by I 1 I, are iso-
morphie. v

Indeed, to prove (a) — by virtue of (y,), and to prove (b) — by
virtue of R < Q, there exists an injective mapping p: I 1—> I, belonging

to Q, such that p~*eA”? n Q. By Q-independence of the sets I, and I,
the mapping p extends to homomorphism %: C(I;) - 4, and the mapping
27" extends to homomorphism 2*: €(I,) - 4. We have therefore »*(h())
= z for every z eI,. Hence we get easily, that % is a bijection and so — the
required isomorphism. m |

It should be noted, that for a given set A and dn arbitrary sequence
of cardinal numbers smaller than the power A there exist an algebra U
and a family Q of mappings defined on A4, such that this sequence consists
of cardinal numbers being the powers of Q-bases of the algebra U. In
fact, we can take for U the algebra functionally complete on the
set A; what follows easily from the Corollary 2 and from remark,
that in the functionally complete algebra every element generates
the whole algebra. The above effect was not posible for the M-inde-
pendence.

It is known, that if the algebra A has two M-bases of different powers,
then the powers of all M-bases of this algebra are finite and form an
arithmetic progresion (see [13],p. 59, [6], p. 159 and [7], pp. 353-4). It
is easy to see also that the same holds for S-independence. Making use
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of the idea of unpublished proof of this theorem (see Corollary 15) due
to J. Dudek (in a similar way 8. Swierczkowski gets certain weaker result
in [22]) we shalt prove now an analogous theorem for Q-independence
under the same type of assumptions about the family Q as in Theorems 4
and 5. To this aim we shall prove three lemmas.

Let the sets I; = {ay, ..., a,}, I = {by,..., by} and I, = {¢y, ..., Conpr)
be Q-bases of the algebra Q[. Fu.‘rther, let fi,.ooyfus 91y -- -5 g De algebraic
‘operations satisfying (19) and (20) Let us denote by J the set consisting
of the following elements fi(C5y «vvy Cn)y oevy fulCry evvy Cm),y

~ We shall prove '

LEMMA 5. If a family satisfies conditions (v,,) and (Y,.1)(?), and besides
|A| > m+2, then.|J| = n+r.

Indeed, if the following equality holds
. fi(cla-")cm)=fg‘(01$'“;cm) for ¢ #74,
then, in virtue of (v,), we would have
; =f1:(b17 sy bm) =fj(b1: rrey bm) =0
in the contrary to our assumption, that the elements a,, ..., a, are diffe-

rent. Taking into account the assumptions [A|Z> m42 and (y,.1) We
conclude that the equality

cm+1v ce cm+1"

filry ey lm) =Cpyg for 0 <k<r
is ruled out due to Lemma 4. Therefore all elements numbered in J are
different. m

LeEMMA 6. If the algebra A possesses n-+-r-element Q-independent subsel
I= {81y vy @piaty |4 Zn+2 and a family Q <« M(A) fulfills the con-
ditions (Y'n,+k)7 (Ymsx) Jor K =0,1,7 and (8,,;) for & = 0,7(8), then the
above defined set J is Q-independent. ;

Proof. On the basis of (vy,) and (Yn+1) similarly as in Lemma 5 we
‘conclude that the elements :
Gi(@yy vy @)y vy G(dry ovny @)y Bgyy ooy Bugr
are different. Taking into account now (y,,,), we deduce, that there
exists a mapping peA’ n Q defined by equalities
»(0;) =9¢(d1;---;dn) for ¢ =1,...,m,

p(0m+j)= n4-7 for j =1,..,7,
therefore from the equality
Fl(fl(cly Ty cm): v '1fn(01) sy ("m) m+1a cm-!-.r)
. = PZ(fl(Gli A m 7fn(cl7 tr0y m cm+1) cm+r)

(") We can assume here (Ym,1,) and (Ym+l 1,)-
(*) We oan assume (yy.r, 1) and (vmk 1) fork = 0, 1, 7, (Yn, ;) and (3nyr, 1):(3,1))-
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for certain I, F,eA"*), Dby virtue of Q-independence of the set I,
and (17) of Theorem 5 it follows

Fi(dyy -y dn,+r) = Fz(du SRS dn+r)-

Taking into consideration Lemma 5, (v, ,,) and (8, ,,) there exists a mapping
pred’ n Q, such that

pl(di) =fi(017""c1lb). fOl‘ i'=1)"-,/'>b,,
pl(dnﬂ') = Cpyy, for ] =1,...,71,

and go p,cA’ n Q, for every ged’ n Q. Making use now of the Q-in-
dependence of the set I, we have:

Fl.(q(fl(cl, RS 0»1.))’ "')'Q(fn(cli L Gm))) Q(("m+1)7 ) ;(l(c'm.+r))
= I ((q 0 p)(di)y ...y (g0 Py (dn+r)) = Fa((qo P)(d1)y ..y (g0 Py1) (.du-l-r))
= 'Zf‘.l?.(Q(fl(cl) e 0»1))’ 0 Q(fn(clﬁ ‘0 Om))’ .(l(cm+1)7 e Q(0m+r))

for every geA” n Q. Therefore J¢Ind(Q). m

From Lemmnias § and 6 we easily get

Lemya 7. Let an algebra U has Q-bases of n-, m-, and (m-+r) -element,
and has an (n-+r)-clement Q-independent set, and besides |A| = max (m,n)+-
+ 2. Moreover let a family Q satisfies the conditions (Y1), (Ynss) for j =0,
1,7, (3,) and (3,,,) for k = 0, 7(°). Then the algebra W possesses also (n+-7)-
element Q-basis.

Indeed, if the sets I, = {a, ..., a,}, I, = {by, ..., b,} and I; = {e,,...
veey Gy ypt Are Q-bases of the algebra A, then, in virtue of Lemmas 5 and 6,
the (n4-r)-element set J={f1(c;, ..., ¢,.), .-, a1y -1 0n)y Cugry ooy g}
is @-independent. And so, it is sufficient to show that C(J) = 4. In view
of the assumptions (v,,) and (3,,), and (18) of Theorem 5, we have

(ﬂj(fl) ""fn))(cli srey cm,) = ¢

for every j = 1,..., m. Therefore ¢;¢ C(J), and hence 4 = C(I,) = C(J),
$50 J iy a Q-Dasis. m

Then taking I, = I,, we inunediately get

CoROLLARY 15. Let an algebra A possesses Q-bases of m- and n-elements,
where n = m-+-1 for certwin r> 0, and has (n=+1)-element Q-independent
set, and besides let |A| = n+42. Moreover let the family Q <« M(A) satisfies
the conditions (y,.,) for j = 0,1, r,r+1,2r and (8,,,) for j =0, r, 2r(%).
Then W possesses also an (n+r)-element 0O-basis. m

(*) We can assame (v, 1) and (Y, x,z,) fork = 0,1, (Yu,1,)s (Y, 1,) and
(Sppr, 1) (8,,,11), (8,,“12), where I is an n+ r-clement Q-independent set.

(**) We can assume (Ym'-}-/c,ll)» (Ymtrsk,1) fovr k =0, 1,7, ("|’1n,12) and (8 494,7)
@Bntr,2;)s (3m,1,), where I is an (m+ 2r)-element Q-indapendent sef, '
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From Lemmas 5-7 follows easily

COROLLARY 16. If an algebra U has two finite Q-bases of less than (k—2)
elements, besides |A| =k, and for all n < k there exists an n-element Q-in-
dependent set and the conditions (y,) and (8,) hold, thew powers of Q-bases,
smaller than k, form an arithmetio progression. m ,

We get also '

THEEOREM 8. If an algebra A has two Q-bases of different powers and for
every n (1) there exisis an n-element set Q-independent with respect to a family
Q = M(A) satisfying (v,), (8,) for every m, then all powers of Q-bases are
finite and form an arithmetic progression.

In fact, finitness of Q-bases follows from Corollary 14 and the re-
maining part of thesis we get from Lemma 7 (using also Corollary 15). m

As the family R fulfills the assumptions (y,) and (3,) for every u,
hence we have

COROLLARY 17. If an algebra has two R-bases of different powers and
for every n(*) there exists an n-element R-independent set, then all powers
of R-bases are finite and form an arithmetic progression. m

It should be noted, that the above given theorem on the arithmetic
progression does not hold for G-independence. Since, by (xviil) it is easy
to consfruct an approprite counter-examiple.

It would be interesting to know the answer for the following

ProBLEM 2. What additional conditions can be put directly on the family
Q to eliminate 9n Theorem 8 the assumption, that for every n (") there exisls
an n-element Q-independent set in an algebra U?

L]

§ 5. Exchange of Q-independent sets

We shall prove now the theorem on exchange of Q-independent sets
(when the family Q satisfies certain conditions). The theoren. on exchange
of M-independent sets proved by E. Marczewski in [13] (p. 58, Theorem
2.4 (ii)) plays an fundamental role in investigations of M-independence.
The idea of the proof of this theorem will be partially employed in the
proof of the following

THEOREM 9. Let Q = M(A) be a family of mappings defined on an algebra
U = (A;F) and having the properties:

(®) He Q,
B) o ped” A Q and U c T, then Plee@ n AY,

(1). It is sufficient to assume that % 3 ng, where g is the minimal power of Q-ba-
sis of the algebra U,
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(f) if Ton Ty =@, p;edT n Q and p(2) = py(@), for mely (i =1,2),
then peAT\YT2 A Q.

Then we have I, U JeInd(Q), whenever I, v Jelnd(Q), I,eInd(Q),
I,nd =0 and C(I,) = C(Iy). |

In other words: Then the theorem on exchange of Q-independent
sets holds. ’

Proof. Let I,, I,u JeInd(Q), C(I,) = C(I;) and I, nd =@. One
should prove, that every mapping peA’Y1 A Q extends to a homo-
morphism €(J u I;) into 4. Obviously, for J =@ the thesis is fulfilled.
Tet us take J # @. For an arbitrary mapping pe4¥Y) n @, in view
of (), wehave p |, A2~ Q and p |, €47 A Q. Since I, is a Q-independent
set hence p|; extends to 2 homomorphism #%,: C(I;) = C(I,) = A.
Taking into acconnt (x) and (8) we infer that A;|guzyseQ- From (y) it
follows now, that the mapping g: C(I,) U J — A defined by equalities

hy(@) for zeC(I)\J,
(@) =

p(z) for wed
belongs also to Q. In view of (B) we conclude that the mapping g,
belongs to Q, and because I, u J is Q-independent set, hence this mapping
extends to a homomorphism k: C(I, U J) — A. Taking into consideration,
that the sets I, and J are separate, we have %;|;, = h|;. Therefore the
homomeorphisms % and %, coincide also on the subalgebra C(I,). Since
hily, = Pl;, =gl hence h(z) =p(x) for wel, U J. We have proved
therefore, that peH, which implies that set I, U J is Q-independent. m

It is worth to note, that the condition (8) of our theorem is, due to
(v), sufficient for the family Ind(Q) to be of finite character. But from
the condition (y) the sufficient condition (formulated by E. Marczewski,
see (iv)) for hereditary of the family Ind(Q) follows easily.

Moreover, let us notice that the conditions (f) and (y), apart from
the family M of all mappings, are satistied by the family Q. consisting
of mappings, which are constant outside of a (some) finite set, then how-
ever Ind(Q,) = Ind(M), as well as the family Q, consisting of a certain
mapping p: 4 — A and all its restrictions p |; where T = 4; in this case
obviously Ind(Q,) # Ind(M).

Let us denote by H, the minimal family of mappings containing H
and satisfying the conditions (B) and (y). Enclosing to the family H, all
mappings obtained from M by employing the condition (y) (condition
(B) does not give anything new) does not imply yet the equality Ind(H,)
= Ind(M). The functionally complete algebra is the simplest example
indicating that, as we have for it Ind(M) = @ and Ind(I,) = 2. We
shall show a less degenerate example. In the ring of integers 3 = (Z;+, " ),
considering as an abstract algebra with the ordinary operations “-+”
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and “-”, every set (in particular a single element) is M-independent.
But every single element (and every two-element Set containing 0) is
H,-independent, because the only mappings of 4™ ~ H, are mappings
p.(a) = a and p,(a) = 0.

11, VARIOUS NOTIONS OF INDEPENDENCE IN v**-ALGEBRAS
' AND LINEAR SPACES

§ 6. Construction. of some family of mappings

In § 3 we have shown, that for every established algebra U there exists
a family of mappings Q, such that the independence with respect to
this family is exactly the C-independence (Corollary 3). Moreover, in § 4
we gave some conditions, such that for the family Q fulfilling these con-
ditions the independence with respect to Q is stronger than the C-inde-
pendence (Theorem 6).

Now, for established algebra % = (4; F) we shall construct the family
Qc c M(A), such that Qg =« Sy u H and the Qc-independence coincide
with the C-independence for subsets with at least two elements.

Let P, denotes the family of all mappings p,,y: T — A defined for
all a,beT in the following way:

z for & =a or z¢C(T\{r}),

23 B
(23) Pa,v) b in other cases.

Let us define the family Q¢ taking for every 7 < 4
T nQC =(.ATHII)U PT'

THEOREM 10. A subset I of A with at least two elements is C-independent
if and only if it is Qc-independent. Moreover every one-element set is Qo-in-
dependent. | .

Proof. From the definition of mappings p,; oOne can easy B&ee,
that every one-element set is Qc-independent.

Let us remark, that from our definitions of families Qo and Pp follows,
that we must only show, that

I<C-Ind iff P;c Hn A'

for every set I with at least two elements.
Let I be C-independent. Then z¢C(IN{z}) for every wel. So from
the definition of pg, Wwe have Prc H n A"
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l\fow, let I has at least two elements and let I be C-dependent. Then
there exXist @g, @y ..., dpel, @g #a; for i =1,..., %, and there exists
algebraic operation fedA™ (for n>1), such that

ag = f(@yy ooy ).

Of course, we can assume, that a;eC(IN{a;}) for i =2,..., %k and g
¢C(IN{a;}) for i = k+1,...,n. If I'is Qc-independent, then both p(, @)
and P(q,,q0,) Can be extended to homomorphisms of C(I) into 4. Taking
into account, that

p(an.al)(al) = =P(a1,nl)(a1)y
Piag.ap) (a'i) =a = p(al,al)(ai) for + = 2.0 "77
Plag.ay) (a;) = a; = .’p(al,al)(a'f) for ¢ =k+1,... ,'%,
we have
f(P(ao.al(%): "'9.p(¢zo,rr.1)(a’n)) = f(p(a]_,al)(al)! °-';P(a1.a1)(a1..))-

So we would have a, = a,, what contradicts the assumption a,eI\{a,}.
Therefore we proved, that I is Qg-independent. m

Remark. Taking P as the family of all mappings pyp defined
by (23) for every a, bed and defined Qg in such a way, that for every
TcA: ' '

AT 0 Q6 = (47 n By P,
we can obtain the constructive proof of Corollary 3. In this case we have
for an established algebra
' C-Ind = Ind(Qy).

Indeed, as in the proof of Theorem 10, one can easy see, that C-Ind
c Ind(Q¢). The converse inclusion is obvious for algebras with only one
clement. As in the proof of Theorem 10 we state, that if I has at least
two elements and is Qg-independent, then I is also C-independent. Now,
let [A|>2,I = {c}, and let I be C-dependent. Then ceC (D) and e (c)
= ¢(c), where ¢(r) denotes the constant algebraic operation with value c.
Taking into consideration the mapping p, . for a #e¢, we have a
= &) (D0, 0)(0)) # ¢(Pa,up(¢) = ¢. So {c} is Qf-dependent. m

From (vii), (ii), the definition of the family Pz, and Theorem 10 we
have the following immediate.

COROLLARY 18. In any algebra U, every S,-independeni subsel of A,
which does not consist of only one element being an algebraic constant, is
C-independent. m

In algebra, in which C(@) =@, we can also consider the family P
of mappings p.: T — C(T) defined for every c<C(@) in the following way:

z for w¢C(T\{z}),

p.(2) = e for .‘L‘eC(T\{w})'
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Let Q, = U P}.
Ted

Similarly to Theorem 10 we can prove

THEOREM 11. If A has at least two algebraical constants, then C-Ind (%)
=Ind(U, Q). ®

From the last two theorems we get

CoroLLARY 18 ([20], p. 489). In any algebra, every S-independent
subset, which has at least two elements, is C-independent. Moreover, if an
algebra has at least two algebraical constanis or has no algebraical constant,
then every S-independent subset is C-independent.

Indeed. The case C(@) = @ is obvious. The first part of this Corollary,
in view of (ix), easily follows from Corollary 18. The second part follows
from Theorem 11, and the definition of mappings p, (or from (viii)), m

Thesis of Corollary 19 cannot be strengthen. In fact, in every algebra
with only one algebraic constant, this constant forms a one-element
S-independent set (in virtue by (xiv)).

§ 2. Corollaries concerning v**-algebras and linear spaces

An algebra U -is called a ov**-algebra (see [19]), if Ind (YU, M)
= C-Ind (N). '

For such algebras, in virtue of Theorem 10, we have a simple

COROLLARY 20. In the v**-algebras, except one-element sels consisting
of an algebraic constant, the following properties are equivalent
(a) M-independence,

(b) S-independence,
(e) Sy-independence,
(d) C-independence.

Indeed, from (ix) we have the implications (a) = (b) = (¢). The impli-
cation (¢) = (d) is a consequence of Corollary 18. The lacking impliea-
tion (d) = (a) is a consequence of the definition of »**-algebras. m

TFor these algebras we get

Ind (M) = Ind(S)\{C(0)} = Ind(S;)\{{c}: ceC (@)} = C-Ind

Taking into account the definition of v**-algebras, (xvi) and (xviii)
we obtain

COROLLARY 21. In an v**-algebra a set I is G-independent iff I\ C ()
18 M-independent. m

In particular, the theses of Corollaries 20 and 21 will be satisfied in
the so-called »*-algebras (see [18]). This class contain linear spaces, and
so-called affine spaces over an arbitrary field I, i. e. algebras 9 in which
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A is a linear space over K and the algebraic operations have the form

n
fl@yyeeny ) = D) Jiy
jem]
n
where A, eK (i =1,...,n) and ) 4 =1. Obviously, C(Q) =@ for an
affine space. =1 ‘_
From Corollaries 20 and 21, and (xi) we conclude immediately

COROLLARY 22. (a). If A is @ linear space, then

Ind(M) U |{0}} = Ind(S) = Ind(S,) = S-Ind u {{0}},
and '
IeInd(Q) < (IN{0}) eInd(M); Ind(A;) =2*.

(b). If A is an affine space, then
Ind(M) = Ind(S) = Ind(S,) = Ind(G) = C-Ind, Ind(A4,) = 2. u

It would be interesting to know the answer to the following

PrROBLEM 3. For which algebras the S;-independence is equivalent to
the S-independence for subsels consisting of at least two elements ?

- Just we proved that this equivalence holds for v**-algebras. It is true for
torsion-free abeliah groups (see § 8, Corollary 26) as well as for Boolean
algebras and some their reducts (see § 11). We describe yet an example,
due to 8. Fajtlowicz, of an algebra 2 for which

Ind(S) = Ind(S,).

Let U be an algebra with |A| > 3, in which the set of algebraic opera-
tions consists of operations f(z,,...,,) with the: property, that there
exists an index k(f), 1< k(f) <n, such that f(s,...,%,) = %, when-
ever |{zy,...,x,}|<2. It is easy to see that this class of operations is
closed under composition. In this algebra U all at most two-element subsets
of A are Q-independent with respect to an arbitrary family Q of map-
pings, meanwhile the subsets consisting of at least three elements are
not S;-independent (the more they are mot S-independent). The reason
is that the mapping p: I - 4 (I = A) defined by

@« for z =a or xz =0,
p(x) = ,
¢ in the other cases,
where a, b, ¢ are different elements of I, has no extension to a homomor-
phism of C(I) into A. Indeed, we may choose an operation feA® with
k(f) = 3, and such that f(,, #,, 2;) = , for different x,, 2,, x,. Then
fla, b, ¢) = a and Flp(a), p(b), p(c)) = f(a,a,0) =c #p(a). m

Obviously, this algebra is not v**-algebra, for the set {a, b, ¢} is C-in-
dependent but not M-independent (it is even not S,-independent), -and
is neither a Boolean algebras nor an abelian group.
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It is worth to remark, that Theorem 6 of § 4 for the v**-algebras with
an infinite support yields

(24) Ind(R) = Ind(M) = C-Ind

directly from the definition of v**-algebras. »

The assumption on the support is necessary, which may be seen in
the two-element algebra ({a, b};f) considered in §4 — it is obviously
v**-algebras, but Ind(R) # Ind(M). However, in consequence of The-
orem 17, the equalities (24) holds in all linear spaces (Wlthout any assump-
tion on the support).

III. THE INDEPENDENCE NOTIONS IN ABELIAN
GROUPS AND QUASI-LINEAR ALGEBRAS

§8. Si- and S-independence in abelian’ groups

In this paragraph we consider abelian groups as abstract algebras
with fundamental operations: a binary, z+%, and an unary, —=z. In
a group ® = (G;4,—) the zero element 0 is the only algebraic constant.
It is well known (see [17] and [8]), that G-independence coincides with
the linear-independence for subsets not containing 0 in abelian groups.
However the notion of A,-independence becomes is not interesting, since
it is easily seen (cp. (xi)), that every subset of abelian group & is A,-in-
dependence. Now we shall investigate S- and S,-independence in abelian
groups. Theorems which will be proved in this paragraph are special
cases of the respective theorems of the following paragraph.but to fasci-
late the understanding they will be proved directly.

LemumA 8. If T is an S,-independent subset of an abelian group ®, then
all elements of I has the same finite order or all of them has the infinite order.

Proof. From Marczewski’s Theorem (§ 2) it follows, that in an abe-
lian group ® the Sy-independence of a subset I of G is equivalent to the
following property:

For every p: I —~ I we have

(«) for every different a,,..., a,¢l and arbitrary integers ky,..., k,eZ
the equality -

(26) k6 =0
implies -

(26) 2 kip(a;) =0

3 — Dissertationes Mathemalicae LXXXI
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Suppose. I<Ind(S,), and I contains at least two elements a and b.
Considering the mappings p,: I — I and p,: I-> I defined by equalities

b for z = a, a forz = b,

Palo) = zforz # a Polo) = z for #b,

we infer, that if & has a finite order, then an arbltra.ry element beI hag

the same order. m

Obviously (by (ix)), Lemma 8 is true also for S-independence.

‘We prove

ToeorREM 12. A subset I of an abelian group ® is Si-independent if
and only if for every different a.,..., a,eI and arbitrary ky,..., k,eZ the
equality (25) implies '
(27 ki(a—b) =0 fori=1,...,n and arbitrary a,bel.

Moreover all elements of IeInd(S,) has the same order.
Proof. Theorem is valid by (xiii) for an one-element subset I. Thus let
I be an S,-independent subset containing at least two elements. The
S,-independence of I is equivalent to (a) for every p: I - I. Let a # b
be elements of I. If in (25) k; = 0 for ¢ =1,...,n, then equalities (27)
hold. Consider mappings ¢;: I -1 (j =0,1,...,n) defined below
; a foro = a,
 Gl®) =b, g = b tora # a,
for every #el and j =1,...,7n
From (25) and S,-independence of I we infer

mb =0, kat+(m—k)b =0,
where m = 2 k,. This yields (27).

i=1

Conversely, let for different a,,...., a,¢I and some %;¢Z (¢ = 1,...,n)
the equality (25) holds. From" (27) we have F, (a — (ai)) =0 for every
p: I -1, i =1,..., n Therefore, by (25), we get

0 ——Zk(a —p(ay)) ——Zkaﬁ—zkm(a =jk1'p(a’i)'

t=1 i=1 i=1

In consequence the condition («) holds for every p: I - I. The second
part of our thesis was proven in Lemma 8. m

The thesis of Theorem 12 suggests (as was remarked by S. Fajtlowicz)
a connection between S,- and G-independence in abelian groups A con-
firmation of this is our

COROLLARY 23. 4 subset I is S,-independent if and only if the set I—1I
={a—b: a,bel} is G-independent and all elemenis have a finite order
or oll of them have an infinite order.

Proof. Let I be Sy-independent and let for some a;, b,el (4 = 1,..., 1)
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the equality n
(28) D hy(a—b;) =0

i=1
holds. From Theorem 12 we conclude that all elements of I has the same
finite order or their orders are infinite. The algebraic operation Zk (0, —

—1y;) may be considered as a function of » variables running over I—1I
a8 well ag a function of 2n variables running over I. Let us consider the
mappings p;: I -1 (1 =1,...,2) defined by formulas

pila) =b, forj #£4 (4 is fixed),
' p;(2) = 2 #a; for all j +# 4.
Using S,-independence we conclude from (28) that
ky(a;—b;) =0 for every i =1,...,n.

So we proved the G-independence of the set I—1.

Conversely, let the set I—1I be G-independent and all elements of
I has the same finite order or all of them have an infinite order, and mo-
reover let (25) holdé for every different elements a,...,a,. Consider
the mappings g .mneA’ "’ defined by the formulas '

Qiab) (@) = a—D,

Qi (®) =0 if z # ay,
for arbitrary a,bel and 4 =1,...,n These mappings are diminish-
ing because the equality kz = 0 implies the equalities kg, (z) = 0
for every #el—1I, a,bel and 7 = 1,..., %, in consequence of the assump-
tions on the orders of elements from I. By G-independence of the set

I—1I we conclude, that (25) implies (27). Therefore I eInd(S,) by Theorem
12. m

Considering the mapping p: I — C(I) defined by
. a if z= aj,

for ael with infinite order, we get a completion of Lemma 8: '
. Lemma 9. If I is an S-independent subset of an abelian group (5 and
(25) holds for some different elements ay,..., a, of I, where at lea,st one Tr;
does not vanish, then all elements of I has the same finite order.

Now we prove
. THROREM 13. In an abelian group ® the following conditions are
equivalent (I being arbitrary subset of G):

(a) I is an S-independent subset,
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(b) all elements of I have the same findte order ov all of them are infi-
nite orders, and IeInd(G),

(c) for every different ai,..., a,el and arbitrary integers ky,..., &, the
equality (2B6) implies
(29) kia=0, ¢=1,...,%

for arbitrary ael,

(d) the condition (¢) holds for arbitrary aeC(I).

Proof. It is easy to see, that S-independence of a subset I in an abe-
lian group G is equivalent to the condition («) for every p: I - C(I).

Let I be an arbitrary S-independent subsed of &. Then Lemma 8 applies
to I. Now, if k;, =0 fori =1,...,n in (25), then obviously %k;a; = 0. If
there exists k; # 0, then all elements of I have the same finite order by
Lemma 9. Using («) for p: I — C(I) we obtain
(30) kya; = 0 for every 1 =1,..., 1
from (25) in the same way as in the proof of Theorem 12 putting a = g, and
b =0. We proved (a) = (b).

Now let I satisfies the condition (b) and let (25) holds. If k; = 0 for
every i = 1,...,7n, then the equalities (29) are fulfilled. However, if
there is some %; # 0, then (30) implies that a; has a finite order m (com-
mon to all elements of I). We conclude from (30), that m|k;, for every
i =1,...,n, and this implies immediately (29) for aeI. Thus (b) = (c).

Further, if I satisfies the condition (c¢), and (25) holds for some diffe-
rent a,,..., a,¢I and some integers k., ..., k,, then (29) holds for aeI
and i =1, ..., n Since every element a of C(I) is of the form

m
a = DLb, forsome byel, LeZ (j=1,...,m)
=
we get 1 m
I;a = lekibj =0,
i=1

and so the condition (d) is fulfilled.

The last implication (d) = (a) is clear since p(a;) eC(I) and so k;p(a;)
= 0 follows from (25) by (d). Thus for every p: I — C(I) the condition
(a) is satisfied and whence I<Ind(S). m

.The notion of S;-independence is essentially more general than the
notion.of S-independence in abelian.groups, as the following example
shows. Let & Dbe the direct product of the eyclic group of order 2 and the
cyclic group of order 4 i.e. G = Z,®Z,. Further let ¢, denote the gene-
rator of Z,; for ¢ = 1, 2. Then it is easy to verify that the set {e,+ 6,, €y}
iy’ Sy-independent but not S- independeéiib, for 2(e,+e,)—2e, =0 but
2¢, # 0, and therefore the condition (¢) of Théorem 13 does not hold. m

From the condition (b) and (viii) we obtain immediately
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COROLLARY 24. A subset I<Ind(S) of an abelian group s linearly
independent whenever I # {0}. m

From Theorem 13 (or from (xiv)) it follows easily, that every one-ele-
ment subset of an abelian group is S-independent. Even miore

COROLLARY 25. Twery one-element subsel of an arbitrary group is S-in-
dependent.

Indeed, the cyclic subgroups generated by an element are abelian
and, since every S-independent subset of a certain subalgebra is S-inde-
pendent in the whole algebra, we may apply Theorem. 13, and we obtain
our corollary from (b). w

From the condition («) and Lemma 9 we get easily

COROLLARY 26. In a torsion-free abelian group
Ind(S) = Ind(S,) = Ind(M) u {0}
and
IeInd(G) < (IN{0}) eInd (). =
Since abelian groups are quasi-linear algebras (see § 9), we get Ind(R)
= Ind(M) in every abelian group, by Theorem 17 of § 9.

§ 9. The S-, S¢-, G-, and R-independence
in quasi-linear algebras

We shall investigate the notions of S-, Sy, G-, and R-independence
in quasi-linear algebras developed as a generalization of abelian groups
and linear spaces. _

An algebra A = (4; F) is called quasi-linear if the following -condi-
tions hold
(a) A is a subset of a certain abelian group G,

(b) for every algebraio operation feA™ (n =1,2, ...) there ewist unary
(not necessary algebraic) operations fi,...,f, defined on A, such
- that

(31) f@sy oy @) = D) fi(@),
j=1

where the summation is the group-operation in @,

(c) there emists an injective algebraic operation geAY, such that the
binary operation r(xz, y) = q(z)—q(y) s algebraic.
The condition (¢) implies that the zero element of @ is an algebraic
constant in A,
It was proved in [3], that the class of quasi-linear algebras coincides
with the class so-called separable variables algebras introduced by E. Mar-
czewski, in [9].
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An algebra % = (4; F) is called a separable variables algebra if for
every k = 1,2, ..., and for every pair f, geA™ (n > k) there exist algebraic
operations f, A® and gocA™ ¥ gsuch that the equality .

@y ooy @) = 9(@gy ... )
is equivalent to
Folyy ooy @) = 9o (Bryrs -y Zn)-

The only separable variables algebras in the class of groups (more
general, in the class of n-groups; see [4]) are the abelian groups. In [2]
there was investigated a certain property of M- mdependence, which is
fulfilled in separable variables algebras.

In our considerations we shall use the following lemma proved in
[31: :

LevmmA 10 ([3], p. 163). Let A = (4; F) be a quasz'-linewr algebra. If

geA™, fe A and f has the form (31), and b = f(0,0,...,0), then

n
g(f(@y s m) = D) 9(fi(@)—1;(0) )48 — (1—1)g 5).
i=1
This lemma we shall use in a case ¢ = ¢ (where ¢ is the operation from
the condition (c¢) of the definition of quasi-linear algebras).
Taking into account this Lemma and Marozewski’s Theorem from
the §2, we have immediately
LemMMA 11. Let U be a quasi-linear algebra and let Q < M(A). Then
a subset I of A is Q-independent iff one of the following conditions is sat-
isfied:
(B) for every ped® n Q, every different ay, ..., a,eI and for arbitrary
fy geA™ of the form

BY) @y @) = D fil@), gy, . 3,) = gilw),
=1 j=1

where f;,9; (j =1, ..., n) are certain unary opemi@'om, the equality
n
(32) Z Z-% (a)
7= =
implies
n
(33) ny ?(ay)) =2 (1 (ay)).

=1

() for every ped’ n Q, every different ay, ooy Opel, and for arbitrary
fy9eA™ of the form (31') the equality

D a(f;(a)—5(0)+ b)) — (n—1) g (b) quy(a — 9;(0)+ by) — (n—1)q(by)

i=1
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‘implies
ij(f"(p (a;))—£;(0) + by )—(n—l )2(by)
= 2 a9y (2(a) — g;(0) + b)) — (n—1) g (3r),

7=1

n n
where by = D' f;(0) and b, = > g,(0).
/=1 j=1

(8) For every pedl n Q, every different ay, cvey d,LeI, and arbitrary
fy geA™ of the form (31') the equality

3 la(f;(a)— £;(0)+bs) — a(g; (a) — g, (0) + byf] — (n—1) [g (b1) — (B2)] =0
j=1

1mplies

2[ (£ (2 (@) —£;(0)+ ) — g (g (2 (@) — 9,(0) + o] —
— (1) [q(b) — (b)) = 0. m

These lemmas take a simpler form if in the quasi-linear algebra % is
only one algebraic constant 0. For in this case we have b, =b, =0
= q(b;) = g(b;). We get

CorOLLARY 27. Let U be quasi-linear algebra with only one algebraio
constant, and let Q ¢ M(A). Then a subset I of A is Q-independent iff
(Y)  for every peA’ n Q, every different ay, ..., a,el, and for arbitrary

f, ge A™ of the form (31') the equalily

a(f; () —£;0)) = D, algs(a)—g;(0)

(32") pX .
implies = "
Y a(fip(a)—£50) = D algs(p(a))—g,(0)). =
=1 f=1 ’

We ghall prove now the following

THEOREM 14. Subset I of a quasi-linear algebra A is S-independent (M-
independent) if and only if for every different ay, ..., a eI, and arbitrary
algebraic operations f, ge A™ of the form (31'), the equality (32) implies
(34) fi(@)—1;(0) = gj(m)—_g:l(o) (J=1,...,m)
for every xeC(I) (or weA, respectively), and

(35) D50 = Dg(0).
=1

=1
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Proof. Let I be a S-independent (M-independent) subset of W. We
define the mapings ;. I — C(I)(Dg,0: I->A)for j=1,...,n and
every #eC(I) (wed):

x for y =a,
0 for y #g.

From S-independence (M-independence) using the condition of Lemma
11 for @ = S (Q = M), we get

a(f; (@) —£;(0)+ by} = q{g;(®)—g;(0)+b).
Taking into consideration the injectivity of the operation ¢ we have

fi (@) —£;(0) 4 by = g;(2)—g,(0)+ b,

for any xeC(I)(zed, resp.). Putting # =0 in this equality we get
b, = b,. Therefore for any 2eC(I) (zeA) and j = 1, ..., % we obtain the-
equalities (34) and (356).

Conversely, let the equalities (34) and (35) follow from (32), for any
zeC(I) (xed) and j =1, ..., n. Hence the equalities

fj(P(aj))—fj(O) = gj(p(a’i))—gf(o)’ J=1...,n

Summing up these equalities and using (35), we get (33). Therefore,. in
virtue of the condition () of Lemma 11 for @ = S (Q = M), the subset
I iz S-independent (M-independent), which completes the proof. m
It is worth to note, that if C(@) = {0} for a quasi-linear algebra ¥,
then (35) is always fulfilled.
Let us consider now quasi-linear algebras 9, in which the algebraic
operations have the form

(36) f(@s, ... fo(w )+ a,

Daa)(Y) =

where ae C(9), and fi, ..., f, are certain endommphmms of the group G.
Let us recall the following well-known
THEOREM ([3], p. 163). Let A = (A; F) be a quasi-linear algebra (a se-
parable variables algebra) satisfying onme of the following conditions:
(d) A is a finite set,

() g(4) = A for each non-constant unary algebraic opemtwn g.
Then A is an abelian group and each operation feA™ is of the form (36)
(where f; are endomorphisms of A, j =1, ..., n).

In particular, algebras satisfying the assumptions of this theorem are
arbitrary reducts of finite abelian groups or of linear spaces, in which
there exists an algebraic operation ¢ of the condition (¢). It is also worthy

to note, that the following lemma (which is a generalization of Lemma 1 of
[(6]) holds.
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Lemma 12. If W is o quasi-linear algebra, in which 4 is an algebraio
operation, then every algebraic operation has the form (36), where f; are en-
domorphisms of semi-group (A; +) and aeC(D).

Proof. The idea of this proof is similar to that of the Lemma 1 of [5].
Any algebraic operation in a quasi-linear algebra has the form:

fl@yy .. @) = Nfi (),

=1

where f; are certain (not necessaly algebraic) unary operations. Let us
take f;(#) = f; (®)—f; (0) and denote f(0,...,0) = a. Then

F(@y ey @) = D (f ()= (0) +a = D fi (@) +a.

j=1 j=l
Obviously, f;(0) =0, and f;(x)+a is an algebraic operation in . Since
the algebra U is a quasi-linear algebra, then, by virtue of (b), there exist
unary operations % and g, such that

fi @+ @) a = h(z;)+g(=,).
We have  therefore f;(#;)+a = h(z,)49(0), fi(@s)+a = h(0)+ g(w.).
Having regard to the fact that A(0)4 g(0) = a, we get
J5 (@4 2s) + 20 = h(m1)+ g(@)+ 0 = fi(20)+f;(2:) +-2a.

Thus f; is an endomorphism of the semigroup (4; 4). m
From Theorem 14 it follows the corollary being a generalization of
Theorem 13.

COROLLARY 28. If in a quasi-linear algebra A e'véry algebraic operation
has the form (36), then a subset I of A is S-independent (M-independent)
iff for every different ay,...,a, of I, and arbilrary algebraic operations

fl@y,y ..., 2,) = ij(mj)'l‘a'; g2y ..y @) = Zgj(.mj)"]"b;
j=1 =1

where f; and g; (j =1,...,m) are endomorphisms of @, and a,beC(D),
from equality

2fj(“jH‘a = Z%(“}H‘b

Je=1
it follows a = b and for every j =1,...,n
fi(@) = gs(®) for any xeC(I)(zed, resp.).

Indeed, it follows easily from Theorem 14 because f; and g; are endo-
morphisms of the group &, and so f;(0) =0 = g,;(0), and because a =
=f(0,...,0), b =g(0,...,0). ™
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Let U be a quasi-linear algebra, in which every algebraic operation
has the form (36). We shall denote by E () the set of those endomorphisms
of the group @, by means of which every algebraic operation in the al-
gebra 90 can be expressed in the form given by the formula (36).

From Corollary 28 it follows immediately

COROLLARY 29. Let U be a quasi-linear algebra, in which every algebraic
operation has the form (38), and any two endomorphisms of E(A) are com-
mutative. Then the element aeA forms an S-independent subset iff for arbi-
trary operations hy, hye AV of the form

hy(@) =flz)+byy,  he(z) = g@)+by  (f, g EQ), by, bee C (D))

the equality
fla)+b, = g(a)+b,
tmplies
by =b, and f(c) =g(c) for every ceO(D). m

It is worth to note, that the assumptions of this corollary are e. g.
gatisfied in abelian groups and for arbitrary reducts of linear space, in
which there exists an algebraic operation g fulfilling the condition (e).
Every one-element set in an arbitrary algebra U is S;-independent and
G-independent, as follows from (xiii). If o is an algebra satisfying the
assumptions of Corollary 29 and C(9) = {0}, then every subset of U is
A,-independent. Therefrom by (x) and (xi) (or basing directly on Corol-
lary 29) we have:

CoroLLARY 30. Let U be a quasi-linear algebra with only one algebraic
constant, in which every algebraic operation has the form (36) and every
two endomorphisms of E(A) are commutative. Then every one-element subset
of A is S-independent. w |

We shall characterize now G-independent sets in quasi-linear algebras
with only one algebraic constant. This easy result is a generalization of
the respective result for abelian groups (see [17]).

TueorEM 15. Let W be a quasi-linear algebra with only one algebraic
constant. Then a subset I of A is G-independent if and only if for every
two algebraic operations f, ge A™ of the form (31') and every different a,, ...,
vy, el the equality (32) implies

f)‘(aj)_fj(o) = g;(a;)—g;(0)  for j =1,...,n.
In fact, it suffices to observe, that, in view of (xv), the mappings
py: T - A defined by the formulas
0 forz # ay,

(%) =
a; forz = ay
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for every I' = A, and a;¢T (j =1, ..., n), are diminishing in every quasi-
linear algebra with only one constant 0. In a similar way as in Theorem
14 using this mappings, we prove our theorem. m

In the special case of quasi-linear algebras with only one constant,
and with algebraic operations of the form (36), a subset I < A iz G-in-
dependent iff the equality (32) (where f;, g; are endomorphisms of the
group @) implies f;(a;) = g;(a;) for j =1, ..., n.

Up to now there was not given a characterization of G-independent
subsets (Problem 4) and S,-independent subsets (Problem b) in quasi-li-
near algebras with more than one algebraic constant.

We have only some partial results proceeding the solution of Problem
5, which consist of a generalization of Theorem 12 and Corollary 23.
Using Corollary 27 for Q = S, and a method similar to that which occurs
in the proof of Theorem 12, we have "

THEOREM 16. Let U be a gquasi-linear algebra with only one algebraic
constant 0. A subset I of A is Sy-independent if and only if for every al-
gebraic operations f, ge A™ of the form (31') from the equality (32') for any
Gy ooey Quel it follows

Q(f;'(a) —fj(o))_Q(fj(b)—ff(O)) = Q(gy'(a)'—gj(o))—Q(gj(b)_gj(o))
for arbitrary a,bel (j =1,...,n). B
From Theorem 15 and 16 we get
COROLLARY 31. Let A be a quasi-linear algebra with only one algebraic
constant 0. A subset I = A is Sy-independent if and only if the set q(I)—
—q(I) = {q(a)—q(b): a, bel} is G-independent and the following condi-

tion holds:
(+) if flg(a)—g(d)) =0 for some a,bel,feAY, then for every ¢, del

flata—a(@) =o.

The proof of this Corollary is similar to the proof of Corollary 23 mak-
ing use of the fact, that ¢(x)— ¢(y) is an algebraic operation in the quasi-
linear algebra U and that ¢ is an injection. The condition (+) allows to
that the mappings ¢,y ¢(I)—¢(I) - 4 defined as in the proof of the
quoted Corollary (instead a—b we put ¢(a)— ¢(b)) are diminishing. m

Finally, for R-independence we have:

THEOREM 17. Ind(U, M) = Ind(, R) in every quasi-linear algebra 2.

Proof. By (i) of § 2 and by Theorem 14, it suffices to show that in
non-one-element algebra for a,,...,a,eIeInd(R) and f, geA™ of the
form (31'), the equality (32) implies (34) and (35) for every zed. Observe
that, by (viii), the set I can not contain the element 0. Consider the map-
ping ped’ N R defined by equalities

Pola,) =0, 2y@) =2 for # # a,.
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By R-independence of the set I, from (32) we get

(37) fo(a )+£,(0) = Zg,w +4.(0).

J=1
n—1 n—-1

The operations 2 fi(z;)+1,(0) and 2 9;(2;)+ 9,(0) are algebraic oper-

ations in U smce OeC((Zi) Connder now the mapping p;,eA7 A R def-
ined in the folowing way:

Pullp1) =0, »pu(@ =2 foraz #a,,.
By R-independence of I we obtain from (37):

-2

D) 1(a)+ Fam1(0)+7,(0) Z’% &)+ g—1(0)+ 7,,(0)

7=1 =1
After n—1 steps we obtain the equality

n

(38) falas) + 239(0) = g1(ay) + ) ;(0).

i=2 §=2

Taking p,,(a;) =0 and p,,(#) = » for » # a,, and using R-independence
of I, we get (35) from (38). Taking for 2¢ A a mapping p,,c AT A R defined

by
Piz(ay) =z,
P:(y) =y, i 9y #ay,ua,
Pyp(®) = ay, i @el
we get In the same way

Fi®@) + D1(0) = fu@) + ' £,(0)—f.(0)

i= ¢=1
= 6:(0) + 30,00~ :(0) = ga(o) + 3'9,(0).
i=1 j=2

‘Whence, by (35), we have
f1(#)—£1(0) = g.(%)—g,(0)

for every zeA.
Similarly considering a sequence of n—1 mappings p;ed’ n R for

k=0,1,...,n—j—1,n—j41,..., n—1 defined by
Di(tyy) =0, pup(@) =2 for =z = Oty el
and mappings p,, defined by equalities

Pr(¥) =@, pu(@) =0, and puly) =y ify 7 G, %,
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for every x<A, we get the equalities (34)-for every e A4, which ends the
proof of our theorem. m

Taking into account, that abelian groups and linear spaces are quasi-
linear algebras we conclude from Theorem 16 immediately

CorOLLARY 32. If W is an abelian group or a linear space, then .
(39) Ind(W,R) =Ind(UA, M). m

It would be interesting to characterize the algebras with the property
(39) (Problem 6). It is worth to-add, that this equality is fulfilled in Boolean
algebras too (see Theorem 23).

IV. VARIOUS NOTIONS OF INDEPENDENCE
IN BOOLEAN ALGEBRAS AND SOME THEIR REDUCTS

§ 10. Additional notations, and some known results

In this chapter we will deal with the Boolean algebra B = (B;
U, n,,0,1) =(B;u,) =(B; n,) and its reducts B, =(B; U, \)
=B;uv, =) =(B;=—,\) =(Bju,n, —,\,0), B, =(Bju,n) and
B; = (B; \) = (B; n, \, 0) where U, n,’, \, — are denoting operations
of join, meet, complement ation, subtraction and symmetric subtraction
respectively. It is clear, that the algebras B, and B, are also reducts of
B,;.

Using notation z = 2! and 2" = 2° for #<B we can define the atom with

respect to the elements 2, ..., ¥,¢B indexed by the sequence (iy, ..., i,),
where each i, = 0 or 1, by the equality
7 i
(40) A(il....,in) (@) ooy @) = ,Dl w/:c-
When 4y, ..., %, are fixed, and @,, ..., 4, are variable, then the atom can

be treaten as the n-ary operation in the set B.
Denoting by 2" the set of all n-tuples of the numbers 0 and 1, we can
define Boolean polynomials as follows:

(41) Ag(Byy ey @) = U A(il ..... i,) (@1 oey @)
ALY

for @ #J < 2", and
(42) Ay (@yy ey T) = 0.
So we have (see [12]) for J, J,, J, c 2™:

0 for (iy...,4)¢J,

(43) .A.J('l/l,-.-,q’ﬂ) = 1 for (ilg"'Jin)eJ’
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(44) A5 0 Ay =450,

(45) Ay 0 Ay = Ages,

(46) A4y, = A,

(47) Ay = Ay, = Ay,

(48) (4, = A, (where J' = 2°\J),
(49) A, = A, it T, =T,

We recall the following well-known description of algebraic opera-
tions in considered algebras.

TezorEM (E. Marczewski, [12]). (a) Operations A; form exactly the
set of all algebraic operations in the algebra B. 0 and 1 are the only algebraic
constants in B.

(b) Any algebraic operation in B, is an algebraic operation in B,, and
any algebraic operation in B, is algebraic in B.

(¢) A function of n variables és an algebraic operation in By iff it is
of the form A, for J not constaining of the n-tuple (0, ..., 0). 0 is the only
algebraical constant in B,.

(d) The n-ary function is an algebraic operation in B, iff it is of the
form Ay, for mon-empty set J mot containning the sequence (0, ..., 0),
and for which the following condition holds: .

if (Ggy ey bmry Oy Gpqry ooy Bp) €y then (Gyy ooy oy 1y Gpgay -ony B)€d
In particular, we have always (1,...,1)ed.

() If (4y,...,1%,) 48 the non-constant sequence, then Aq . ;. 8 the

..... "
symmetric subtraction of two different algebraic operations in B,.

Let us consider the algebra By = (B;\) = (B; n,\, 0). ‘We have

(£) 0 s the only algebraic comstant in B,, and (0,...,0)¢ J for each
A eA™(B,). The atom (40) is an algebraic operation in By if and only
if mot all terms i, ...,1%, are equal 0.

Proof of (f). The first part of (f) is the consequence of the facts that
B, is a reduct of B, and 0 = 2\ . When (40) is an atom for which non every
index 4, is equal 0, then there exist m > 1 and the permutation (%, ..., k)

of the set {1,...,n}, such that 4, =4, =... =4 =1 and o,
=... =1 = 0. Then we have
m
A(il,...,z‘n)(a’n oy By) = ( (( M a’kj)\al.:m.|.1)\"°)\a’kn°

i=1

SO A(‘il'“'""n) GA(n) (SBQ) . R
Let us also note, that the algebra B, is an essential reduct of B, because

the join operation can not be defined with the aid of the meet and subtra-
otion.
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§ 11, Various notions of independence
in regular reducts of Boolean algebra

We shall study now the various notions of independence in some re-
ducts of Boolean algebras B among which algebras B, B,, 23;', '933 are
particular cases.

For any reduct B, of the Boolean algebra B we shall introduce the
following notation:

S = U{J: 4;¢4™(B,)},

™ = 8"\ N {J: A;eA™(B,)}
and '
o0
T, =JTM™.
n=1
In particular, for the reducts B, and B,: §™ = 2"\{(0,..., 0)}
=8M =T =T, and for the reduct B,: M = S M = anN
N(0,...,0), (1, ..., 1)} (in virtue of (c), () and (f) of the previous
paragraph).
We shall call B, to be a regular reduct of the Boolean algebra B, if it
has the following two properties:

() T, #0,

(II) for each sequence (i4, ..., %,)eZ, there exist two different opera-
tions 4, and 4, algebraic in B,, such that
(50) A(il,...,in) =4, — AJz'

It is worth to remark, that the condition (a) is equivalent with exi-
stence in B, of two different algebraic operation which essentialy depend
on the same variables. '

By C, we shall denote the algebraic closure in B,.

From the quoted in § 10 Theorem of Marczewski it follows, that al-
gebras B, B, and B, are regular reducts, and from (f) (considering the
symmetric subtraction 4, ., = 0), we also deduce, that B; is a regu-
lar reduct of the Boolean algebra B.

Firstly we can state the following

THEOREM 18. Let B be the fized Boolean algebra. Then Ind(%B,, Q)
= Ind(B;, Q) for Q =« M(B).

Proof. It is clear, that Ind(B,, Q) « Ind(B,, Q), because B, is
a reduct of B,. Now suppose that I ¢Ind(B,, Q). Then there exist alge-
braic operations 4, and 4,, in B,, the mapping peQ n AT, and elements
Gyy ..., @,el, such that

A_,l(al, -..,a;,n) =AJ2((L1, N a.n)
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and

AJI (p(a,l), ---12’(“71)) 7 A.Tz(fp (@1)s ey p(a’n))-
So we have, from (47), in the same time Aj . (@,...,8,) =0 and
Aj .y (p(ay), ..., p(ay) #0. Then there exists the atom Ay .,
where (iyy...,%)eJ1.y,, SUCh that

(51) A,y (@ry oy ) =0
and
A('ill'--lin) (p (-al)’ tt? .'p(“n)) ;{: 0.

Since, by (¢) not all indices iy, ..., i, are equal to 0, hence from (f) the atom
Aliyeniiy) is an algebraic operation in B,. So I¢Ind(B,, Q). m

In the paper [12] the M-independence in algebras B, B,, B, had been
investigated. The common generalization of this results is given in the
following theorem.

THEOREM 19. A subset I < ‘B is M-independent in the regular reduct
B,, if and only i,

Agig) (@1 eey ) # 0

for each sequence (iy,...,1,)eT,, and for every different a,, ..., a,el.
Proof. The idea of this proof is implicite contained in the proofs of
Theorems 4 (i), 4(ii) and 4(iii) of [12].
Suppose, that there exist different elements a,, ..., a, of I and sequence
(Tyy +++y 2,) €T, such that

Ay (B1y ooey 8y) = 0.

Taking into account, that B, is a regular reduct, we have two different
algebraic operations 4, and 4;, for which (50) holds. Therefore

(52) AJI (ali Ty a’n) = -A-Jz(a’lr teey a’n):

and so I is M-dependent in B,.

Now suppose, that every atom A4 With respect to elements be-
longing to I is non-void for (4, ..., 4,)eT,. If for any different a,, ..., q,
eI, and 4, 4; <A™ (B,) the equality (52) holds, then, from (47), we
have

Aoy, (@) .oy a,) =0,

Let us see, that if (i, ..., 4,)¢7,, then for every 4, ,A; cA™(B,) also
(t1y -+-5 %) ¢J = J,. Because for every non-empty subset J < T,

Alyy ey @) #0.

So we obtain J, —~ J, = @, J, = J,, and from (49) the set I is M-inde-
pendent. m
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In the following theorem we shall give the characterization of S-
and S,-independence in regular reducts of the Boolean algebra.

THEOREM 20. Let B, be a reqular reduct of the Boolean algebra B. Then,
for every subset I — B the following conditions are equivalent:

(«) I is M-independent or I = {c} where ceC,(D),

(B) I ds S-independent or I = {c} where ¢ is an algebraic constant in B,,
such that ¢« C,(0), . )

(v) I is S;-independent.

Proof. It is easy to see, that every subset containing only one element
.0 i3 M-independent (so also S-independent) in B,, whenever a¢C,(@).
Now, if ¢eC,(0), then {c}is M-dependent in B,, but it is S-independent -
in the cagse ¢'¢C.(D) (see § 2 (xiv)). However each one-element subset
is Sj-independent (ep. §2 (xiii)).

Now, let I be a set with at least two elements. For such I, by (ix)
of §2, we have implications («) = (f) = (y). So, by Theorem 19 it is
sufficient to show, that if I is S,-independent, then for every sequence
(b1y vy in)eT, and each ayy...,a,el the atom Ay ;) (4, ..., a,). i
non-void. )

From quoted in § 2 Theorem of Marczewski and from (47), the Sj-in-
dependence of the subset I in the algebra B, is equivalent with the follow-
ing property:

for every mapping p: I — I, each different elements a,, ..., a,el, and
for every A; , A; <A™ (8B,) the equality

(53) AJléJz(ali ey By) =0
implies .
(54) AJI#JZ (.'p(a’l)} "‘7p(a’n)) =0,

Let I be the S,-independent set. Assume a contrario, that I is M-de-
pendent. So from Theorem 19 there exist different elements a,, ..., a, €l

and sequence (¢, ...,1,)eT,, such that (51) holds. By the assumption
of regularity of B,, and from (47), there exist two different algebraic
operations A, , 4; , such that

-A'Jla.f2(a‘11 revy an) = 'A(il,...,in) (a’li RS | a’n) = 0.

Because |I|> 2, without loosing generality we can assume that n = 2.
Let us consider two mappings p,, p,: I — I defined as follows:

a, forz =a; if i; =iy,
(65) P1(2) = :

a, in other cases,

a forx = a; if 4; = 1,
(56) Pa(@) ={ ’ ’

@, in other cases.
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Taking into account Sy-independence of I, we have’
A(il....,«cn)(ﬂi(al): "'71972(.“'11.)) =0 (i=1,2).

Thus a, N @, =0 = a, N a,. Hence we have a, N a4, = 6, and a; N a4, = g,
what contradicts the assumption that a, and a,are different. So I <Ind(M). m
Because B, By, B, fulfil the agsumptions of Theorem 20, we obtain
the following corollaries
COROLLARY 33. In the Boolean algebra B:

Ind(M) = Ind(S) = Ind(S))\{{0}, {1}}. =
COROLLARY 34, In the algebra B (and Bg):
Ind(M) = Ind(S)\[{0}} = Ind(S,)\{{0}}. m
COROLLARY 35. In the algebra B,:
Id(M) = Ind(S) = Ind(S,). =

In a regular reduct B, the notions of M-, S- and S,-independence
ooincide for sets with at least two elements. From Corollaries 33-35 and
Theorem 4 (vi) of [12] it follows that this notions coincide in the algebras
B, B;, B, (on the same set B) for infinite sets.

Analogously to Theorem 4(iv) of [12], from Theorems 19 and 20 we
can obtain the following '

COROLLARY 36. In the family of all subsets of a given set X, troaten as a requ-
lar reduct B, of the Boolean algebra 2% , in which C (@) = @ there exist n M-in-
dependent (S-independent, Sy-independent) sets if and only if | X| = |T™|. w

Now let us characterize the G-independence in regular reducts.

THEOREM 21. In the regular reduct B, of the Boolean algebra B, subsel
I c B is G-independent if and only if INC,(D) is an M-independent sel.

Proof. From (xviii) and (ii) it is sufficent to show, that if I n C.(9)
=@ and I is G-independent, then I is M-independent. Because in B,
there are no non-constant self-clependent elementy, then we can take into
account sets with at least two elements.

Let I be a G-independent set, with at least two elements and with
no an algebraic constant. Let us assume a conirario, that I is M-depen-
dent. Then there exist, by Theorem 19, different elements a,, ..., a,el
(n > 2) and sequence (iy, ..., 4,) €T,, such that the equality (1) is fulfilled.
As in the proof of previous theorem using the mappings p, and p, defined
by (65) and (56), which, by (xv) of § 2 are diminishing, we obtain the
contradiction. So I<Ind(M). m

As an easy corollary from Theorem 21 we have

COROLLARY 37. In a regular veduct B, of the Boolean algebra of all subsets
of X, there exist n G-independent sets iff |X| > T™|— |C,.(@D)]. m
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Because B, B, B, are regular reducts, from Theorem 21 we obtain
CoRrROLLARY 38. 1) In the algebra B:

IeInd(G) < IN{0, 1} eInd(M).
_2) In the algebra B, (and B,):
IeInd(G) < IN{0}eInd(M).
3) In the algebra B,: |
Ind(G) = Ind.(M). "

Let us characterize A,-independence in regular reducts of Boolean
algebra. |
 THEOREM 22. In a regular reduct B, of the Boolean algebra B, the subset
I = B is A,-independent if and only if the following conditions hold:

(8) if @,...,1)eT, and 1eC,(D), then

(67) A(1,'....1_)(a'1: veey @) F0
for every different ay, ..., a,¢€l,

Q) i (0,...,0)eT, and 0eC.(D), then

(68) A,..(@1y ooy 8) %0

for every different a,, , a,el,
() f the operation = —> 2’ is an algebraic one in B,,(iy, ...,14,) T, and

for some a,...,a,el the equality

(59) Ay, iy oy @) =0
holds, then

(60) Agiy.n-ipl@yy ..oy @) =0.

"Proof. Takiﬁg' into -account Theorem of Ma.rczewsi(i'(see §2) and
(47) we infer, that the A,-independence of the subset I of B is equivalent
with the following condition:

Jor every unary operation peAX(B,), each different ay,...,a,el, and
for every A, A;,eA™(B,), the equality (53) implies (54).

"+ Let the set I fulfil (3), (£) and (n). Obviously if for every a,, ..., a,el
and each sequence (i, ...,1,)eT, the inequality
Ay, ..ig) (@1y oeny @y) #0

holds, then, in view of Theorem 19, the set I is M-independent, and so,
by (ii) of § 2, it is A,-independent. Let now for some a,, ..., a, of I, and
A;, Ay cA™(B,) the equality (53) holds. If the operation p(z) = @’ is
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algebraic in B,, then, in virtue of (n), p preserves (63). The conditiosn
(8) and ({) imply, that if (53) holds and 1¢C,(B) or 0¢C,.(D), then
(1,...,1)¢J, —Jz or (0,...,0)¢J; = Jy, respect1ve1y It gives us that,
the mapplngs o1 (if 1eC (@) and ¢ -0 (if 0¢C,(D)) preserve (53),
So for every unary operation p algebraic in B, from the equality (53) fol-
lows (54), what proves A,-independence of .

Conversely, let I be A,-independent. If 1¢C.(@), (1,...,1)eT, and
Ag,.y(@ry ey y) =0 for some ay, ..., a,¢I, then there exist algebraio
operatlons Az ,A g, 0 B, such’ that the equalities (50) and (53) hold.
Taking the mapplng p(z) =1 we state, that the set I can not be A, -in-
dependent. In the same way one can prove, that (f) is also the necessary -
condition for A,-independence of I. Now, let p(2) = ' be algebraic ope-
ration in B, and for some gequence (i, ..., %,)eT, and some ay,...,a,el
the equality (59) holds, and in the same time

Ap-i,..1-4)) (@1 .00y 0y) #0,

then considered mapliing p{x) =2 leads to a contradiction with 'thé-
assumption of A4,-independence of the set I. Therefore, the conditions
(8), (¥) and (n) are necessary for the A,-independence. m.

Let us see, that if the operation z.— ' is algebraic in B, and 1¢C, (D),
then the conditions (8) and (v) imply (). Using the part (a) of Marczewski’s
Theorem, recalled in §10, we have: ' '

- COROLLARY 39. A subset I of B is A -independent in the Boolean algebra
B, if and only if, both the followmg conditions hold:

(&) for every ay, ..., a,eI the equality (57) holds,
(n') if some a,,..., a,el fulfil (59), then also (60). m

From this we have next corollary, that to the A,-independent set,
in the Boolean algebra B, two disjoint elements (in particular an element
a and its complement a) can not belong.

It is worth also to remark, that two-element set in a Boolean algebra
is A,-independent iff it is M-independent. However one can to give an
example of Boolean algebra and three-element A,-independent set, which
is M-dependent. Let B = 2% and I = {a, b, o}, where a = {1, 2, 3},
b ={2,3,4}, ¢ = {3,4,5}. Then I has the ;requirecl properties, because
anbne=0 =a'nb nc,and all others atoms with respect to the sets
a, b, ¢ are non-empty. m

From the parts (c) and (e) of the theorem quoted in § 10, one can
easily see, that for algebras B, and B,, the conditions (8), (%) and (»)
always hold. So, we have the following corollary, which could be also
obtained from.(xi) of §2. '
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COROLLARY 40. In the algebras B, and B, (and B,) every subset of
B is Aj-independent. m

Finally, let us look on the R-independence in regular reducts of Boolean
algebra.

THEOREM 23. The R-independence coincides with the M-independence
for every regular reduct B, of the Boolean algebra.

Proof. Firstly, let us see, that in any algebra an one-element set ig
M-independent iff it is R-independent, and that the R-independence is
hereditary with respect to finite subsets. Now, taking into consideration
Theorem 19 and (ii) it is sufficient to show, that if I is R-independent
in 8B,, then for every sequence (iy, ..., 4,) eT, and each different ay,...,a,cl
the atom A ;,(ay, ..., a,) is non-void. .

Let us assume, that, contrary, for some a,, ..., a,eI(n > 2) the equa-
lity (59) holds. So, from the regularity of %B,, there exist two different
algebraic operations 4, and 4, , such that (50) holds. From (59) we get
(63). In view of the R-independence of I, for every injective mapping
p: I — B the equality (54) will hold.

If ¢, =0 and 4, =0, or @; =1 and 4; = 0 occwr in the considered
atom, then we can treat it as a new atom with respect to n—1 elements
among 0 or 1 does not appear, respectively. So, we can assume, that
if @; = 0 then 4; = 1, and 4, = 0 for a; = 1. Obviously, any permutation
of the set B, which exchanges the elements 0 and 1, restricted to I is
injective. Therefore, if 0 or 1 appears among elements «@,, ..., a,, then,
by the R-independence of I, from (59) we can obtain a mew, equal to 0,
atom with respect to elements of I being not equal 0 and 1. So, without
loosing generality, we can assume, that no element a,,...,a, is equal 0
or 1.

Let us consider the permutation p of the set B, which exchanges 0
with a,, when 4, = 0, or exchanges 1 with a,, when 4, = 1. Then from
(59), by the R-independence of I, we get

A(il.....in_l,{n)(p (@), ..., p(a,) = Aty (B1y eeny Oy g) = 0.

Using the same argumentation n—1 times, we will obtain aj! = 0, hence
a; = 0 or k. This contradicts our assumption on the elements a, ..., a,.
Therefore we proved, that I<Ind(M). m
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