EN
CONTENTS
INTRODUCTION .................................................................................................................................................................................................. 5
I. INDEPENDENCE WITH RESPECT TO A GIVEN FAMILY OF MAPPINGS (GENERAL PROPERTIES) ............................................ 7
§ 1. Notation and main definitions.................................................................................................................................................................... 7
§ 2. Notions of independence defined by families of mappings (Q-independence).............................................................................. 9
§ 3. Maximal families of mappings for a given independence.................................................................................................................... 13
§ 4. Q-independent sets of generators (Q-bases)......................................................................................................................................... 17
§ 5. Exchange of Q-independent sets.............................................................................................................................................................. 27
II. VARIOUS NOTIONS OF INDEPENDENCE IN ALGEBRAS AND LINEAR SPACES............................................................................. 29
§ 6. Construction of some family of mappings .............................................................................................................................................. 29
§ 7. Corollaries concerning v**-algebras and linear spaces....................................................................................................................... 31
III. THE INDEPENDENCE NOTIONS IN ABELIAN GROUPS AND QUASI-LINEAR ALGEBRAS............................................................ 33
§ 8. $S_0$- and S-independence in abelian groups.................................................................................................................................... 33
§ 9. The S-, $S_0-$, G-, and R-independence in quasi-linear algebras................................................................................................... 37
IV. VARIOUS NOTIONS OF INDEPENDENCE IN BOOLEAN ALGEBRAS AND SOME OF THEIR REDUCTS.................................... 46
§ 10. Additional notations, and some known results.................................................................................................................................... 45
§ 11. Various notions of independence in regular reducts of Boolean algebra....................................................................................... 47
REFERENCES...................................................................................................................................................................................................... 54