Zawartość
Pełne teksty:
Warianty tytułu
Abstrakty
CONTENTS
1. Introduction............................................................................................5
2. The local form of concomitants of an almost complex structure.............9
3. Illustrative examples.............................................................................18
4. Connection valued concomitants of an almost complex structure........22
Bibliography.............................................................................................26
Słowa kluczowe
Tematy
Miejsce publikacji
Warszawa
Copyright
Seria
Rozprawy Matematyczne
tom/nr w serii:
239
Liczba stron
26
Liczba rozdzia³ów
Opis fizyczny
Dissertationes Mathematicae, Tom CCXXXIX
Daty
wydano
1984
Twórcy
Bibliografia
- [1] S. J. Aldersley, Differentiable concomitants and their role in differential geometry and mathematical physics, Ph. D. Thesis (unpublished), University of Waterloo, 1978.
- [2] D. B. A. Epstein, Natural tensors on Riemannian manifolds, J. Differential Geometry 10 (1975), 631-645.
- [3] G. W. Horndeski, Tensorial concomitants of relative tensors and linear connections, Utilitas Math. 9 (1976), 3-31.
- [4] G. W. Horndeski, Tensorial concomitants of an almost complex structure, in Topics in Differential Geometry, Academic Press, New York 1976, 45-55.
- [5] G. W. Horndeski, Examples of almost complex manifolds of non-extremal type, Utilitas Math. 9 (1976), 59-71.
- [6] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley Interscience, New York 1969.
- [7] A. Nijenhuis, $X_{n-1}$-Forming sets of eigenvectors, Nederl. Akad. Wetensch. Indag. Math. 54 (1951), 200-212
- [8] A. Nijenhuis, Geometric aspects of formal differential operations on tensor fields, Proc. Internat. Congress Math. (Edinburgh, 1958) Cambridge University Press, Cambridge, England 1960, 463-469.
- [9] W. Ślebodziński, Contribution à la géométrie différentielle d'un tenseur mixte de valence deux, Colloq. Math. 13 (1964), 49-54.
- [10] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge University Press, Cambridge, England 1934.
- [11] A. G. Walker, Dérivation torsionnelle et seconde torsion pour une structure presque complexe, C. R. Acad. Sci. Paris 245 (1957), 1213-1215.
- [12] H. Weyl, The classical groups, Princeton University Press, Princeton, New Jersey 1946.
- [13] T. J. Willmore, Note on the Ślebodziński tensor of an almost complex structure, J. London Math. Soc. 43 (1968), 321-322.
- [14] K. Yano and M. Ako, An affine connection in an almost quaternion manifold, J. Differential Geometry 8 (1973), 341-347.
Języki publikacji
EN |
Uwagi
Identyfikator YADDA
bwmeta1.element.zamlynska-f1bbb84a-efc3-43e5-9f9d-09a5ea84b7e2
Identyfikatory
ISBN
83-01-05658-4
ISSN
0012-3862
Kolekcja
DML-PL
