Institute of Mathematics, Pedagogical University, ul. Oleska 48, 45-951 Opole, Poland
Bibliografia
[1] R. D. Anderson and G. Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic : an application of inverse limits, Proc. Amer. Math. Soc. 10 (1959), 347-353.
[2] R. H. Bing, Partitioning of a set, Bull. Amer. Math. Soc. 55 (1949), 1101-1110.
[3] R. H. Bing, Complementary domains of continuous curves, Fund. Math. 36 (1949), 306-318.
[4] R. H. Bing, Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), 536-556.
[5] K. Borsuk, On the topology of retracts, Ann. of Math. 48 (1947), 1082-1094.
[6] K. Borsuk, Concerning the classification of topological spaces from the stand-point of the theory of retracts, Fund. Math. 46 (1959), 321-330.
[7] J. J. Charatonik, Two invariants under continuity and the incomparability of fans, ibid. 53 (1964), 187-204.
[8] J. J. Charatonik, Confluent mappings and unicoherence of continua, ibid. 56 (1964), 213-220.
[9] J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.) 54 (1967).
[10] J. J. Charatonik, Open mappings of universal dendrites, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 489-494.
[11] J. J. Charatonik, Monotone mappings of universal dendrites, Topology Appl. 38 (1991), 163-187.
[12] J. J. Charatonik, Homeomorphisms of universal dendrites, Rend. Circ. Mat. Palermo, to appear.
[13] J. J. Charatonik and K. Omiljanowski, On light open mappings, in: Baku International Topological Conference Proceedings, Elm, Baku, 1989, 211-219.
[14] W. J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55 (1994), 215-238.
[15] C. A. Eberhart, J. B. Fugate and G. R. Gordh, Branchpoint covering theorems for confluent and weakly confluent maps, Proc. Amer. Math. Soc. 55 (1976), 409-415.
[16] R. Engelking, General Topology, PWN, Warszawa, 1977.
[17] H. M. Gehman, Concerning the subsets of a plane continuous curve, Ann. of Math. 27 (1925), 29-46.
[18] G. R. Gordh, Jr., and L. Lum, Monotone retracts and some characterizations of dendroids, Proc. Amer. Math. Soc. 59 (1976), 156-158.
[19] K. Kuratowski, Topology, Vol. I, Academic Press and PWN, 1966.
[20] K. Kuratowski, Topology, Vol. II, Academic Press and PWN, 1968.
[21] K. Kuratowski and A. Mostowski, Set Theory, North-Holland and PWN, 1976.
[22] K. Kuratowski et G. T. Whyburn, Sur les éléments cycliques et leurs applications, Fund. Math. 16 (1930), 305-331.
[23] L. Lum, A characterization of local connectivity in dendroids, in: Studies in Topology, Academic Press, New York, 1975, 331-338.
[24] T. Maćkowiak, The hereditary classes of mappings, Fund. Math. 97 (1977), 123-150.
[25] T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979).
[26] K. Menger, Kurventheorie, Teubner, 1932.
[27] S. Miklos and P. Spyrou, Open retractions onto arcs, Questions Answers Gen. Topology 8 (1990), 449-456.
[28] E. E. Moise, Grille decompositions and convexification theorems, Bull. Amer. Math. Soc. 55 (1949), 1111-1121.
[29] E. E. Moise, A note of correction, Proc. Amer. Math. Soc. 2 (1951), 838.
[30] S. B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227-234.
[31] J. Nikiel, A characterization of dendroids with uncountably many end points in the classical sense, Houston J. Math. 9 (1983), 421-432.
[32] J. Nikiel, On Gehman dendroids, Glasnik Mat. 20 (40) (1985), 203-214.
[33] E. Puzio, Limit mappings and projections of inverse systems, Fund. Math. 80 (1973), 57-73.
[34] K. Sieklucki, On a family of power c consisting of ℜ-uncomparable dendrites, ibid. 46 (1959), 331-335.
[35] K. Sieklucki, The family of dendrites ℜ-ordered similarly to the segment, ibid. 50 (1961), 191-193.
[36] T. Ważewski, Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, Ann. Soc. Polon. Math. 2 (1923), 49-170.
[37] G. T. Whyburn, Analytic Topology, Amer. Math. Soc., 1942.