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Introduction

Let R be a (not necessarily associative) algebra over a field of characteristic
0 and let R satisfy a polynomial identity, i.e. R is a PI-algebra. When studying
the properties of R, the following natural question arises: How many identities
of R are there? Of course, we have to decide how to measure the quantity of the
polynomial identities. There are some numerical invariants of R as the
codimension and cocharacter sequences and the Hilbert series of the T-ideal of
R and they are objects of intensive investigation. )

The main purpose of this paper is to survey and present from a unique
point of view some recent quantitative results on PI-algebras. Using the
powerful technique of the representation theory of the symmetric and general
linear groups we present eflective computing methods for concrete PI-algebras.
In particular, we apply these methods for studying the polynomial identities of
some important associative, Lie and Jordan algebras.

The paper 1s organized as follows. Section 1 gives the necessary background
on Pl-algebras and representation theory of the symmetric and general linear
groups. Sections 2 is devoted to the free Lie and commutative algebras, some
other relatively free algebras and to an important reduction of the com-
putations in the case of varieties of unitary algebras. Section 3 studies the
polynomial identities of algebras which in some sense are similar to the 2 x 2
matrix algebra. Section 4 handles the calculation of the codimensions of T-ideals
and the Hilbert series of relatively free algebras. For other applications of the
presented computational techniques we refer to the surveys [5, 21, 22].

1. The background
1.1. Varieties of algebras

We fix some notation: K is a field of characteristic 0, X = {x,, x,, ...},
F = K{X} is the absolutely free algebra of infinite rank. The elements of F are
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polynomials in noncommutative and nonassociative variables and with zero
constant terms. Usually we consider the products left-normed; hence
XXX = (X,X,)%5.

The element f(x,, ..., x,)e K{X} is called a polynomial identity for the
K-algebra Rif f(r,,...,r,)=0forallr,, ..., r,e R. The class U of all algebras
satisfying a given system of identities {u;(x,, ..., x,)|i€l} is called a variety of
algebras. The set of all polynomial identities U satisfied by the variety
U (respectively by the algebra R) is a two-sided ideal of K{X} called a T-ideal
and denoted by T(U) (respectively T(R)). We use the same letters U and
U respectively for the T-ideals and the related varieties. The algebra
F(U) = K{X}/T(U) (with the same set of generators X = {x,, x,, ...}) is the
relatively free algebra of U. We denote by F,(U) the subalgebra of F(U)
generated by the subset {x,,..., x,,}. Moreover, for a subspace Q of F we

denote by Q(U) the image of Q under the canonical homomorphism
F - F/U = F (U).

1.1.1. ExampLES. The class of all associative algebras forms a variety
defined by the identity (x,x,)x,—x,(x,x,;); the varieties of all Lie and all
Jordan algebras are determined by the sets of identities {xI, (x,x,)x,
+(xpx3)x; +(x3x )X} and {x;x; —x5%,, (¥ )0xxy) = (x5(x,x())x, }, respect-
ively, etc.

We denote by P, the vector space of all multilinear polynomials in
K{X}, P, = {3 asilxsq1)-- K. .. Xym)|a,4€ K}, where the summation runs over all
permutations ¢ of the symmetric group Sym (n) acting on {1, ..., n} and over
all distributions d of brackets. It is well known that every variety U can be
determined by its multilinear identities. Let P,(U)= P/(P,n T(U)),
n=1,2,... The sequence of codimensions of the variety U (or of the T-ideal U)
is defined by ¢, (U) = ¢, (U) =dim P, (U), n =1, 2, ... Additionally, the genera-
ting function c(U, ) =) c,(U}" and the exponential generating function
&U, t) =) c,(U)"/n! are called the codimension series and the exponential
codimension series of U, respectively.

The relatively free algebra of rank m is a graded vector space, F,(U) =
Y FOXU), where FR(U) is the homogeneous component of degree n. The
Hilbert series of F,(U) is defined by H,(U, 1) = H(F,,(U), 1) = 3 dim F(U)t";
F,(U) has another grading counting the degree in any variable and the
corresponding Hilbert series is

H(U,t,, ..., 1,) =Y dim F&-m(U)g ... i,

Clearly H,,(U,t)=H(U, ¢, ..., t) (with m t's).

1.1.2. PROPOSITION. Let U be a T-ideal in K{X and let K be an extension of
the base field K. Then F(U)= K®F(U) is the relatively free algebra of the
variety U of K-algebras defined by the same system U of polynomial identities
(assuming that K{X} is canonically embedded into K{X}=K®iK{X})
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This proposition allows one to extend the base field and, if necessary,
consider K algebraically closed.

1.2. Representations of Sym(n) and GL,,

The vector space P, has a natural structure of a left Sym(n)-module
defined by

o 0, - oo %) = (Xggiyy-- Ne - Xogiy), 0 €Sym(n),

and for a long period this was the main tool for quantitative investigation of

the polynomial identities (see [54, 57, 25] for details). It is known that the -
representations of Sym(n) are related to the polynomial representations of the

general linear group GL_. The canonical action of GL, on the m-dimensional

vector space spanned by x,,...,x, can be extended diagonally to

F,,=K{x,,...,x,} by

g: (x;, .. ). x )= (g(x;) - ). g(x;), geGL,,.

Although this action was used incidentally before 1980, its systematical
application began in [5, 10] (see also [26] for the formalism of the equivalence
of the application of Sym(n) and GL,).

The irreducible representations of Sym(n) and GL, are described by
partitions and Young diagrams [31, 65]. For a partition £ = (4,, ..., 4,) of n,
Ay z...2A 20,4+ ...+ =n, we consider the corresponding Young
diagram [1], the number n = ||4|| of boxes of [4] and the related irreducible
Sym(n)-module M(4) and GL,-module N, (4). In order to obtain generators for
the irreducible submodules of P, and F,, we use the following device:

(i) As a GL _-module, the homogeneous component F{ is a direct sum of
the GL,_-submodules N%,, where d is a fixed distribution of brackets and
N &2 AW 4 = K{x,, ..., x,> being the free associative algebra. Here the
GL,-module isomorphism ¢ deletes the brackets in NY,.

(ii) First, we determine a generator for the irreducible submodules of A™.
We define an action of Sym(n) on AD by

m

(x;,...x; )0 ' = Xivo o+ Xy g € Sym(n).

Then every submodule N,(4) of A} is generated by a nonzero element

(1) f(xl’ ""xr):I—ISr,-(xh ""xri)zayga

where a, € K, ¢ runs over Sym(n), S,(x,, ..., X,) = ) (SIgNG)X41) - - - Xg(p IS the
standard polynomial and r,, ..., r, are the lengths of the columns of the
diagram [4].

(111) An arbitrary irreducible GL,-submodule N, (2) of F,, is generated by
an element

(19 Y falxys o0y X)),

where f, 1s of the form (1) and the summation runs over all distributions of
brackets. We call (1) a standard generator of N,(4). It follows from the



20 V. DRENSKY

representation theory of GL,, that the standard generator is uniquely deter-
mined up to a multiplicative constant. _

(iv) A generator of the irreducible Sym(n)-submodule M(4) of P, can be
obtained by a linearization of a suitable standard generator of N, (4).

For an arbitrary T-ideal U of F, the subspaces Un P, and UnF,, are
Sym(n)- and GL,-modules, respectively. Hence the relatively free algebra F(U)
inherits the actions of Sym(n) and GL,. In particular, the Sym(n)-character
sequence x(P,(U)), n=1,2, ..., is called the cocharacter sequence of U. The
following assertion gives the equivalence of the application of the represen-
tation theory of Sym(n) and GL,,

12.1. THEOREM [5, 10]. (i) Let A and A* be the lattices of submodules of
F® and P, respectively (with respect to the sum and intersection of submodules).
Then there is a lattice monomorphism yj: A — A* such that Y(N (1)) = M(4) and
a generator of M(A) is obtained by a linearization of the standard generator of
N_(4). The image of y(A) coincides with Z M(2), where the diagrams [ 4] have at
most m rows. In particular,  is an isomorphism for m = n.

(i1) For every variety U, P,(U) and F&(U) have the same module structure: If
P U) =Y k(AM(4), then FE(U) =3 k(AN ().

It turns out that for concrete computations the representations of GL,, are
more convenient than those of Sym(n). For example, the polynomial identities
h(xy, ..o Xp) = X0 --- Xo@m and x} from AJ” are equivalent and generate
M(n) and N, (n) respectively but x} is written more compactly. Additionally, the
representations of GL,, allow the classical invariant theory to be applied to
Pl-algebras (see e.g. [26, 50]).

For a multihomogeneous polynomial f(x,, ..., x,) we denote by

f(xla Vi1 -+ 1y ylnll'-'lxms ymb“ﬂ}’mnm)

the partial linearization of f(x,, ..., x,) which equals the component of
SO +yii+ o+ Vings ooy Xt Ym1+ ..+ Ymp,,) multilinear in y;;. The following
result allows one to find standard generators of N, (4).

1.2.2. THEOREM [36]. Let A = (4,, ..., 4,) be a partition and let f(x,, ..., x,)
be a nonzero polynomial from F,, which is homogeneous of degree i, in
x,i=1,...,r. Then f is a standard generator of N_(A) if and only if
Sl | A x;, x;]...1x,) =0 for every pair (i,j), 1 <i<j<r.

In the representation theory of GL,, the role of characters of GL , is

played by the Schur functions S,(t,, ..., ¢,) [41]. They are symmetric polyno-
mials from K[r,...,¢,] and

Sty ...t )= at} ... tim=H(N_(A),1,....,1,), Nui)cAD.

The coefficient a; equals the number of semistandard A-tableaux with content
i=(iy, ..., I,), 1e. the Schur functions can be obtained in a combinatorial way
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(see Section 1.3). It is known that the Hilbert series of a GL,-module
determines the module uniquely. In particular, H(F,(U),¢,,...,¢,)
= Y k(A)S,(ty, .., t,) if and only if F (U) =3 k(AN(4).

1.3. The Littlewood — Richardson rule

1.3.1. DerFiNiTION [41]. Let A=(A,,..., 4,), u=(uy,...,u) and
v=(v,,..., v,) be partitions, v, = A, and ||| = ||A]| +||ull-

(iy A diagram of shape [v— 4] is a scheme of boxes obtained from the
diagram [v] by removing the boxes of the diagram [A]. When ||i|}| =0,
[v—4]l=[Dv]

(1) A [v—A]-tableau with content pu is the diagram [v—A] whose boxes
are filled in with y;, numbers 1, ..., u, numbers s.

(i) A tableau is semistandard if its entries do not decrease from left to
right in the rows and increase from top to bottom in the columns.

(iv) The sequence w(T) is obtained from a tableau T by listing the entries
of T from right to left, consecutively reading the rows from top to bottom (as in
Arabic).

(v) The sequence w = a,, a,, ..., a, is a lattice permutation if it contains
the symbols 1,2, ..., s and for each 1 <k <n and 1 <i < s—1, the number
i occurs in a,, ..., a, no less than i+1 times.

1.3.2. THEOREM (The Littlewood-Richardson rule). The following isomor-
phism of GL,-modules holds:

N D@ N () = 3. 3 Nplv),

where c}, is the number of semistandard tableaux T of shape [v— A] with content
U, such that the sequence w(T) is a lattice permutation.

An important role in our concrete computations is played by the following
consequence of Theorem 1.3.2.

1.3.3. COROLLARY. N_ (A, ..., 2, )®N (=D N, (1, ..., ), where
el =NAll+5s and py 24, 2 py 2 24,2 ... 2 1y 2 Ay,

In particular, for s = 1 the corollary coincides with the branching theorem.

1.3.4. Rule. The following device allows us to obtain the standard
generators of the tensor product of GL,-modules. It is a combination of
Theorems 1.2.2 and 1.3.2. Its preliminary version has been used in [14, 36]. In
order to simplify the rule, we consider N,(1) and N, (u) as submodules of
AP and AY, respectively, where p = ||A|{ and g = |{y|l, and identify 4P'® A?
with A%*9. Additionally, we fix partitions A, u, v as in the Littlewood-Richardson
rule, and f;(x,, ..., x,) and f,(x,, ..., x,) are the standard generators of N ,(4) and

N, (u), respectively.
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(i) Find all semistandard tableaux Ty («) and T,(f) with contents

o= (o, ..., %) B=1(By,..., B), respectively, a;+f; = v,
(i) For every tableau T,(«a) let

Jaa =000 o Xaag b Xy ooy Xma)

be the linearization of f;, where x;; = x,, k being the (i, j)-entry of T(a), and
similarly for f, and T(f).

(i) Write f(x,, ..., X,) = 2 aup/22fus With unknown a,z€K.

(iv) Assuming that f(x,|...|x;, x;|...|x,) =0 for all pairs (,)),
1 <i<j<m, obtain a linear homogeneous system for a,;. Any nonzero
solution of this system gives a standard generator for N, (v) ¢ N (D)@ N ().

By using additional information, this rule can be simplified for concrete
cases.

135. EXaMPLE. Let A =2, 1), g = (@), v = (3, 12), £(%,, X;) = S,(x ;s X5)X,
= (3, %, —X,x,)%; =[x, X,]x,, f,(x,) = x{. Then

2| 113]

111 ,
L1 gy D ey =
2] 3

LB = [1]3] Tdb) = T(B;) =

f).al =f,1(xl, xllxz) = 2f;_(x1a x2)9 f;;ﬁ, =f;_,(x1’ x3) = Xy X3 +X3Xy,

T(o,) =

alay) =

|1.-).—A
[\S)

Joar = 203(xy5 X3)s fup, = X1 X2+ X,5X,
Fhay = Dxpy 31, 4+ [x00 X31xy, Sy = [x0, XoJxs+ [x3, x50%0, fups = 2x3,
S(xy0 x5, x3) = 2{a;[x;, %0, 003+ x3%, ) +a,[x;, x3]x,(x,x, +x,x,)
+ai([xy, %31, + x5, X33x )X +a5(0x,, x,3%3 + ey, x21%,)x3},
Slxglxq, x10%3) = f(xy, Xy, X3) = 228, +2a3— d3)[x;, x3]x7 = 0,
J(x11%51%5, x) = 2(2a; — a3 +2a3)[x,, x,1x} =0,

SO, [%5] %35, x5) = 2[x,, x,1{(a, +a,)x,(x,x; +x,x,)+ (a5 +a3)x,x}} = 0.
Therefore we obtain the system
2a,+2dy—d} =0, 2a,—dy+2d} =0,
a,+a, =0, day+a5=0,

with a nonzero solution a, = 1.5, a, = —1.5, a5 = 1, a5 = — 1. Easy calculations
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show that the standard generator of N,(3, 1%) is

where 1d,(34), (35)e Sym(5).

The direct product Sym(p)x Sym(q) is canonically embedded into
Sym(p+gq), Sym(p) acting on {1,...,p} and Sym(g) on {p+1,...,p+q}.
Moreover, for a subgroup H of the group G and M being an H-module, we
denote by M 1 G the G-module induced by M. The Littlewood—Richardson rule
has the following interpretation in the language of Sym(n)—representations.

1.3.6. THEOREM. Let ||i]| =p, |lull =g and N (A)@ N (u) = ch,,
Then

(M(A)® (M(w) T Sym(p+q) = ) c;.M(v
where M(A)® M(v) has a structure of Sym(p)x Sym(q)-module.

1.4. Other products of modules

In this section we shortly discuss some other products of modules which
have applications to Pl-algebras.

1.4.1, The Kronecker product. Let 1 and u be partitions of n. Then the
Kronecker (or inner) product MA@ M(u) of M(4) and M(u) is
a Sym(n)-module with a diagonal action of Sym(n). This product plays an
impdrtant role for computing the cocharacter sequence of the k x k matrix
algebra (see e.g. [56]).

1.4.2. Symmetrized tensor powers. For a GL _-module N we consider the
symmetrized tensor power

Nek=N® ... ®N,

identifying the temsors v, ®...®v, and v,;),®...@V,u), c€Sym(k), v,eN
A result of Thrall [63] (see also [41], Exercise 5, p. 45) shows that

2) N (2o =Y N, (24, ..., 24,).

The symmetrized tensor product is a very special case of the general notion of
plethysm (see [31, 41]).

1.5. Representations of Lie superalgebras

In this survey we apply the representation theory of Sym(n) and GL,, or
equivalently, of the Lie algebra gl,. This theory works very well when the
number of rows of all the Young diagrams appearing in the decomposition
P(U) =) k(AM(2),n=1, 2, ..., is bounded. Generally, the number of rows
increases with n and the bchaviour of P (U) cannot be studied by the
representations of a fixed GL,. Kemer (see [32, 34]) has applied Z,-graded
algebras for the investigation of associative Pl-algebras. This has allowed him
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to obtain important results on polynomial identities. In particular, he has built
the structure theory of T-ideals in K{X') in the spint of commutative algebra.
A combination of [53] and [32] gives the following theorem whose final
version is due to Braun [8].

1.5.1. THEOREM (Razmyslov-Kemer—Braun [53, 32, 8]). The Jacobson
radical of every finitely generated associative Pl-algebra (i.e. with montrivial
identity from K{X)) over an arbitrary field is nilpotent.

In practice, the application of Z,-graded algebras involves the represen-
tation theory of Lie superalgebras. The formalism of representations of linear
Lie superalgebras has been developed by Berele and Regev [7] and they have
obtained important quantitative results in the associative case.

2. First applications

2.1. Relatively free algebras

One of the main problems in this paper is the following: How to compute
the cocharacter sequence of a T-ideal or, equivalently, to find the multiplicities
k(2) of the irreducible GL -submodules of F,(U)? A trivial example is the free
associative algebra A4,, when the Sym(n)-modules PA, = 4 and KSym(n) are
isomorphic. Therefore, 4,, = Y (dim M(A))N ,(4). For small n it is possible to use
the character table of Sym(n).

2.1.1. ExamPLE. Let PL, be the set of all multilinear elements of degree 4 in
the free Lie algebra L. It is well known (see e.g. [4]) that PL, has a basis
{X4X411)X0t2)X0(3) | 0 € Sym(3)}. Let x be the character of the Sym(4)-module PL,
and let x =) k(A)x,. Easy calculations show that y(id) = dim PL, = 6, x(12)
= x(123) = x(1234) = 0, x((12X(34)) = —2. The character table of Sym(4) is the
following:

id (12) (123)  (1234)  (12)34)

(4)

(3. 1)
(2%)
2. 1%
(1%

[

— 0 N L
—t et O e
—

Hence we obtain a linear system for k()
x(id) = k(4)+3k(3, 1)+2k(2%)+3k(2, 1)+ k(1% = 6,
2(12) = k(@) +k(3, 1)—k(2, 1)—k(1%H =0,
x(123) = k(B —-k(2})+k(1% =0,
x(1234) = k(4)—k(3, 1)+ k(2, 1) —-k(1*) =0,
2((12)34)) = k(@) —k(3, 1) +2k(2¥)—k(2, 1) +k(1*) = —2.
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The only solution of the system is k(4) = k(2%) = k(1%) = 0, k(3, 1) = k(2, 1?)
= 1; therefore PL, = M(3, 1)+ M(2, 12). In practice, bearing in mind that we
are interested in solutions in nonnegative integers, it suffices to consider only
a part of the equations.

2.1.2. The same example. The dimension of M(4) equals the number of
standard A-tableaux (i.e. the semistandard tableaux with content (1, ..., 1))
The hook formula gives another expression for dim M(A):

dim M(3) = nY/[ ] (4 + A5—i—j+ 1),

where 2; is the length of the jth column of [4]. Applying one of these two
expressions for dimM(4), it is easy to show that dimM@3,1)=
dimM(2, 1?) = 3 and hence dimPL, = dimM(3, 1)+dimM(2, 1?). Therefore,
in virtue of Theorem 1.2.1 it suffices to obtain in the free Lie algebra nonzero
standard generators for N,(3, 1) and N_(2, 1?). But

Joa.y =0 x; —x,x))x;x; and  f;,42 = Z(Signa)(xlxo(l))(xa(bea(J))

do not vanish in L, and this gives the desired decomposition.

This method has been used successfully to obtain similar decompositions
for P,(U), n > 1, for the varieties of Lie algebras U, = N,4 n AN, determined
by the identities (x;x,)(x;x Hxsxs) and (x;X,x30x4xsxs) [10] and
U, = [A%, E, E] delined by (xx,x3x4)x5xs [43]. For other applications see
[S, 22].

2.1.3. THEOREM [63]. Let LY be the homogeneous component of degree n of
the free algebra L,. Then the following GL_-module isomorphism holds:

K+4, =Y (LY@, ... ®(LE)®)

where the sum is over all symmetrized tensor powers with p; > 0.

Proof. It is known that the free associative algebra A,, coincides with the
universal enveloping algebra of L,,. Let {g;;|j = 1, ..., d;} be a multihomogene-
ous basis of the vector space L. By the Poincaré-Birkhoff-Witt theorem,
K+ A, has a basis {[[,([],97)|a;; = 0}. Hence the Hilbert series of K + 4,
equals the Hilbert series of

SLOPP @y ... @ (L)),

Since the Hilbert series determines uniquely the GL,-module, the desired
isomorphism holds.

Since the GL, -module structure of A? is known, Theorem 2.1.3 allows
one to calculate the structure of LY. This has been done for n < 10 in [63]. For
example, LM=N_(1), L =N,(13),L¥=N_2,1) and L¥ =N_3,1)
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+ N_ (2, 1?). Therefore
AD = (L) 4 (LD @ LD+ (L)@ LY
FLO@ (LD +LE)®?) + LI® L + L)
= N_(5)+ N, (3)®N (1) + N, (2@ N2, 1)
+ N (D®((Na3, D+ N2, 19)+(N,2%)+ N, (1Y)
+Nm(12)®KNm(2’ 1)+L£n§)

and bearing in mind that Ay'= N_(5)+4N (4, 1)+5N _(3, 2)+6N,(3, 1?)
+5N (22, )44N, (2, 1)+ N, (1%) we establish

LS =N_4, )+N,(3,2)+N,(3,1)+N,(2% D+ N_(2, 1%).
The standard generators of N,_(4) = L% for n < 6 have been obtained in [10,

12]. Another approach to the free Lie algebra is given in [35] (see also [4]).

2.14. ExaMPLE. Let C,, be the free commutative algebra of rank m, i.e. the
relatively free algebra F,_(C) of the variety defined by the identity x,x, —x,x,.
It follows from [58] that if CY) has a basis {u;|j=1,...,d;},i<n, then
C'™ has a basis

{u,-ju,,_,-‘;‘|j = l, ey di’ k = ], ey d"_,', l = 1, ey [H/Z],
and if i = n—i then j < k}.
As in the proof of Theorem 2.1.3,
o C= T CH@CH™+eCHY®CH,
where ¢ =1 for n even and ¢ =0 for n odd. In particular, C’ = N _(1),

CH =N (DN (1) =N, (2), CQ=CP®CP=N_(3)+N,2,1),

CH = CHRCI+CP®RCP = 2N, (4+2N_ (3, D+2N_(2H)+ N, (2, 1?),
CP = CI® O+ CP@ Y
~ 3N,(5)+ 6N, (4, 1)+6N (3, 2)+4N (3, 1) +4N (22, )+ N (2, 13).
The standard generators of the submodules can be obtained by Rule 1.3.4 or its
modification for symmetrized tensor powers. Another method for computing
C is applied in [46]. Similar formulas can be established for the free

anticommutative algebra when in (3) the symmetrized tensor square has to be
replaced by the antisymmetrized tensor square.
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2.1.5. ExampLE [23]. Let S, be the variety of all solvable Jordan algebras

of class 2 (ie. S, is defined by (x,x,)(x;x,)). Then the vector space F(S,) has
a basis

{xixg, coox 1 20, <y <lig < ..., iy <lis<..}.

The Hilbert series of the subspaces of A%’ spanned by {lesz X 20 <3
<...<j,y and {x ...x, |k; <...<k,} coincide with the Hilbert series of
N_(2,177%) and N,(17), respectively. Hence FZ**1XS,)= N (2, 1¥" )@, N.(14
and FE**3(S,) = N, (2, 1N®N,(1%, k = 1, and the Littlewood-Richardson rule
allows one to calculate the cocharacter sequence of the varety §,.

2.2. Unitary algebras

In this section we consider varieties U of unitary algebras only. We denote
by F* = K{X}* the absolutely free unitary algebra and by F*(U) the free
algebra of the variety U. In the associative case it is known that every variety
U is determined by its proper (or commutator) multilinear identities [60].
A similar result holds for arbitrary algebras. For f(x,, ..., x,)e F¥, let Jf/ox,
be the formal derivative in x;. For a multthomogeneous polynomial, &f/dx;
equals f(x,]...|x;, 1]...]x,). We write

B,={feFy|df/tx,=0,i=1,...,m} and I,=P,nB,

for the subspace of F,; vanishing under the formal derivations and the space of
proper multilinear polynomitals of degree n, respectively. [t is easy to see that an
analogue of Theorem 1.2.1 holds and I' (U) and BY(U) have the same module
structure.

2.2.1. THEOREM [ 13, 14, 16]. (i) Every polynomial from F,(U) can be uniquely
written in the form Y bix,, ..., x,)x; ... x; ,where be B (U)and i, < ... <i,

(i) Any variety U can be defined by its identities from I',,n=2,3, ...

() HWU, ty, ..., t,)=H(B,(U), t,, ..., t,)/[]'=. (1 =¢), H (U, 1) =
= H(B,(U), t)/(1 —1)".

(tv) The following GL,-module isomorphism is valid:
F (U)= B, ()®K[x,, ..., x, 1%,

where K[x,, ..., x, 1" is the ordinary algebra of polynomials in commuting
variables.

Since K[x,,..., x,]* =) .20 N,(n), Theorem 2.2.1 and Corollary 1.3.3
reduce the problem of decomposition of F,(U) to a similar (but simpler) problem
of decomposition of B, (U). In particular:

2.2.2. COROLLARY [13]. Let
F:(U) = Zk(il* et Am)Nm(}')’ Bm(U) = Zkl(-u'lj trre ﬂm)Nm(,u)
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Then k(A,, ..., A =D ky(y, ..., u,), where the summation is over all partitions
(Ui ooy M) SUch that A, 2 p, = Ay 2y, 2 ... 24, 2 I,

Especially for the free associative algebra A} there exists a good basis of
the space BA, of proper polynomials in A4}.

2.2.3. ProPOSITION [59]). The vector space BA, = Ay has the following
basis:  [x;,..., X;, N B T qu], where iy > i, <... <, ..0 01 >,
<...<j, and [u, v] =w—ou, [uy, ..., u,] =[[uy, ... p 1], u,].

Additional arguments give an expression for the GL,-module B4, :

2.2.4. THEOREM [20]. The following GL,-module isomorphism holds:
BA, =) N,(p,— L, )®@...®xN,(p,—1, 1),

where the summation runs over all integers p; 22, r=0,1,...

In particular, modulo the T-ideal of A, generated by [x,, x,1[x,, x,], the
commutators [x;,..., x; 1,i; > i, <... <i,, span the module N _(p—1, 1).
Hence Rule 1.3.4, Proposition 2.2.3 and Theorem 2.2.4 allow one to obtain the
standard generators of the irreducible submodules of BA™, For n < 6 this has
been done in [12], for n =7 in [49] and for n = 8 partially in [20].

3. Simulation of 2 x 2 matrices

3.1. Algebras with good bases

The three-dimensional real vector space R® with the usual scalar and
vector products enjoys the following properties:

(i) For every basis f,, f,, f; of R? the standard process of orthogonalization
gives an orthogonal basis e, e,, e,.

(ii) Let g(x;, x5, x3) = (x;, x...)x (... x x; ) be a monomial (with respect to
the vector product) of degree 4, in x,. Then g(e,, e,, e,) = ce}' x e%2 x e3*, where
e=0,+1, §,=0,1,,=d;, (mod2) (and e x e x e = 0).

It turns out that these simple properties of R? play an important role in
the investigation of the polynomial identities of 2 x 2 matrices [10]. Here we
give a generahization which works successfully in several different cases.

In virtue of Proposition 1.1.2, we assume that the base field is algebraically
closed. We make use of the Zariski topology [30, pp. 36-37]. Let u,, ..., u, be
a fixed basis of a vector space W, K[y]* = K[y;li=1,...,k, j=1,...,m]*
the polynomial algebra over K and Q a subset of K[y]*. The set of all
m-tuples of vectors (vy, ..., v,)€ W™, v; = Y ¥- 1 &;u;, &;€ K, such that g(&;) =0
for every g(y;;) € Q is closed in the Zariski topology. Any nonempty open subset is
dense in this topology. Hence a polynomial function which vanishes on an open
subset vanishes everywhere. In particular, if R is a finite-dimensional algebra and
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S(xy, ..., x,)e K{X} and f(r,, ..., r,) =0 on a nonempty open subset of R™,
then f(x,, ..., x,) is a polynomial identity for R.

3.1.1. DerFINITION. Let R be a finite-dimensional algebra. We call the basis
Fis-.-» ¥, of R good if there exists a px p upper-triangular matrix U = (a;)),
a; = 1, with the following property:

for any two monomials g,(x,, ..., X,), g5(xy, ..., x,)€ K{X} of degree d, in

x; there exist n,, n,€K, (1,, 1,) # (0, 0), n,, 7, depending on g, and g, only,
such that

J
N191(815 ---» 5,) = 129,(51, ..., 5,), where s;,= ) agr,j=1,...,p.
i=1

3.1.2. THEOREM. Let R be a finite-dimensional algebra, dim R = p and let the
set of all good bases in R be dense in the Zariski topology in R?. Then for the
variety var R generated by R the GL, -module F,(varR) is a submodule of
Y Noldys ooy 4,), ie. the multiplicities of the irreducible submodules N (%) of
F.(varR) equal O or 1 and are zero if Z,,1 #0.

_Proof. Let F,(varR) =Y k(A)N,(4) and let 1 =(4,,..., 1)) be a partition,
4, # 0. First, assume that q > p and that Silxy, ..., x))eF, is a standard
generator of N,(A). Since arbitrary u,, ..., u,€R are linearly dependent and
there is a skew symmetry in the g variables of f, (see (1) and (1),
filuy, ..., u)=0and f, is a polynomial identity for R,ie. k() =0if 4,,, # 0.
Now, let ¢ < p and let f;, f'e F,, be standard generators of two isomorphic
copies of N, (4). Let ry, ..., r, be a good basis and s, ..., s, be the related
vectors from Definition 3.1.1. Therefore, for suitable f;;eK,r, =s,,71,
=8, +B128y, -0 Py =8, +B1pS; ...+ PBp_1,p Sp-1. Bearing in mind the
skew symmetry in (1) and (1) we obtain f'(r),...,r)=f"s,..., ),
fys - r))=1"(s1, ..., sp). Since f; and f;’ are multihomogeneous of degree 4;
in x; Definition 3.1.1 gives that either f;(sy,...,s) =fi(s4,...,5)=0 or
Ji(sy, ..., 5)#0 and there exists veK,v#0, such that f'(s;,...,s)
—Vfi(sys .5 8)) =0. Hence fi(xy,....x)=/i0xs, ..., X)—=vfilxy, ..., x,) s
a standard generator of N, (4) (which does not depend on the choice of the
basisr,, ..., r)) and fy(r,, ..., r,) = 0. Since the set of good bases is dense in R?
this yields that f,(x,, ..., x,) is a polynomial identity for R. Hence the two
isomorphic copies of N,(4) are “glued together” in F, (varR) and k(1) < 1.

The subvarieties of a variety U form a lattice with respect to the intersection
and union. It is distributive if and only if P,(U),n=1, 2, ..., are sums of
nonisomorphic irreducible submodules.

3.1.3. CorOLLARY. Under the conditions of Theorem 3.1.2, the lattice of
subvarieties of var R is distributive.

A modification of Theorem 3.1.2 works for varieties of unitary algebras. For
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a unitary algebra R we define
Z(R) = {zeR|zr = rz, (zr)s = r(zs) = z(rs) forall r, seR}

and fix a decomposition R = Z(R)@ S into a direct sum of vector spaces.

3.14. DerINITION. Let dimR/Z(R) < co and R = Z(R)®S. The basis
ry,....r, of S1is good if it has the property described in Definition 3.1.1,

3.1.5. THEOREM. Let R = Z(R)® S, dim S = p and let the set of all good
bases of S be dense in SP. Then B,(var R) is a submodule onNm(&l, ey Ap):

Proof. Let f(x,,...,x,)€B, and wu;=z,+v,eR, z;eZ(R),v;€S,

j=1,...,m Since we have 0df/°x;=0 and z,eZ(R), it follows that
S+, oz =f(vy, ..., v L 1€ f(X,, ..., X,) is an identity for R il and
only il f(v,.....v,) =0 for all v;€S. The proof is completed by repeating

verbatim the arguments of the proof of Theorem 3.1.2.

3.1.6. COROLLARY. In Theorem 3.1.5, the lattice of subvarieties of varR is
distributive.

3.2. The Grassmann algebra

Let V, be a p-dimensional vector space with a basis e, ..., ¢, The
Grassmann (or exterior) algebra E,=EWV,) of V, has a basis
€,.--¢,1<iy<..<i<p,q=0, and the multiplication is defined by the

associative law and e,e; = —e;e;. The polynomial identities of E = E, have
been described in [37] (see also [2]). Here we give an alternative exposition.

3.2.1. THEOREM. (i) Let I' (var E) be the set of proper multilinear polynomials
in F¥(varE). Then I'(var E) = M(1") for n even and I' (var E) = 0 for n odd.
(ii) P(varE)= Y5, M(g, 1"9).

Proof. (i) The algebra E is Z,-graded, E = E°@E', E® and E' being
spanned by the monomials e;, ...e; of even and odd degree, respectively. Since
we have Z(E) = E° and S = E'ss =ae; +...+a,e; , o, E°, it follows that
Fa(1)---Tamy = (signa)r, ...r, for arbitrary elements r,, ..., r,€S. In particular, if
rp=r; i #j,thenr,...r, = 0. For studying the polynomial identities of degree
n, without loss of generality we investigate E, instead of E, p being sufficiently
large, and replace the free algebra K{X}* by the free associative algebra
A* = K(X>*. In virtue of Theorem 3.1.5, B, (var E,) (and hence B,(var E)) is
a submodule of Y} N (1,,..., 4,). Let 2 =(4,,..., 4,) with A, > 1. Then the
standard generator f,(x,, ..., X,) is of degree > 2 in x,, hence it vanishes on
E and therefore B,(varE) < ) N, (1. For n even, the standard polynomial
S.(xy,...,x,)eAY is in the space BA, of proper elements and
S.(ey, ..., e) # 0. For n odd, the only submodule N_(1") of 4% is generated by
S.{xy, ..., x,) which does not belong to BA,. Hence B,(varE) =) N, (1%
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The expression for I'(var E) is obtained immediately, because I',(var E) and
B®(var E) have the same module structure.
(i) The assertion follows immediately from (i) and Corollary 2.2.2.

3.3. The Lie algebra sl,

Let sl, be the Lie algebra of all traceless 2 x 2 matrices with multiplication
[u, v] = uv—ou. Over an algebraically closed field, sl, is isomorphic to the
three-dimensional vector space K*® with the usual vector product

(Xy, Xq, X3) x(¥y, V2, Vi) = (xz}’3_x3}’2, X3y =X V3, XY — X))

The Killing form of K3 is proportional to the scalar product
xy, Xg5 X3), (V15 V2o Y20 = X1 Y1+ X302+ X305,

3.3.1. THeorem [10). F,(varsl)) = N, ()+) N,(A,, 4,, 1;), where the
summation runs over all (A, A,, 43) such that 7,>0 and A, #4, or
A, #F Ay (mod 2).

Proof. We identify the Lie algebras sl, and K>. The basis r,, r,, r, of K*
will be good if it can be transformed to an orthogonal basis s,, s,, 55 (see
Definition 3.1.1 and the very beginning of Section 3.1). Additionally, if
A=A,=A;=¢(mod2),e=0, 1, then sixsjxs5=0 and therefore
f1(54, 55, 83) =0. In virtue of Theorem 3.1.2, F,(varsl,) =) N, (4,, 45, 45),
where 4, # 4, or 4, # A, (mod2). Since the module N, (4,), 4, > 1, does not
appear in the decomposition of the free Lie algebra L,, the proof will be completed
if we construct standard generators f, for all N, (4,, 4,, 4;) with 4, # 4, or
A, # Ay (mod 2) and 4, > O, such that the f; are not polynomial identities for
sl,. We refer to [10] for the explicit construction of f.

Actually we have proved that the standard generator f(x,, x,, x;),
A =(4,, 4;, 43), is a polynomial identity for sl, if and only if fi(a,, a,, a;) =0
for a basis a,, a,, a, of sl, such that the matrix of the Killing form is diagonal
with respect to a,, a,, a,. For example, the following is such a basis:

4) a; = —(e11—ez)/ —1/2, a,=(erzten)/—1/2, a3=(e12—ez,)/2
with multiplication a,a, = —a,a, = a,/2, a,a, = —aya, = a,/2, a;a, = —a,a,
=a,/2,a{ =a3 = a3 = —1/4, hence [{a,,a,]=a,, [a,,a;] = a,,[a;, a,]
= a,. Therefore we obtain the following consequence.

3.3.2. CorROLLARY. The standard generator fi(x,, X5, X3), 4 = (4, 4,, 43),
is a polynomial identity for sl, if and only if f(a,, a,, a;) =0, where a, a,, a,
are defined in (4).

Razmyslov [52] has discovered a basis for the T-ideal of sl, (i.e. a system of
generators of the T-ideal) consisting of three identities of degree 5. Later,
Filippov [24] has reduced this basis to one identity. Comparing the decom-
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positions
Py(varsl,) = M4, )+ M(3, 2)+ M(2%, 1) (see Theorem 3.3.1), and
PL, = M{4, 1)+ MQ3, 2)+M@3, 1)+ M2, )+ M(2, 13)

(the multilinear Lie elements of degree 5—this is a consequence of Theorem
2.1.3) we deduce that the Sym(5)-submodule of PL, of multilinear identities of
degree 5 for sl, is isomorphic to M(3, 1)+ M(2, 1?). This allows Razmyslov’s
result to be restated in the following way.

3.3.3. THEOREM [52]. The elements from the free Lie algebra L
Joay = Z(Sign 0) (Xo(1)Xe(2)) (Xa(3)X )X 5
Jzan = Z(Sign 0) X Xa(1)Xa(2) Xa(3) Xo(4)

Sform a basis for the polynomial identities of sl,. (In [52] these polynomials are
replaced by the equivalent ones, (x,x,Xx,x;)x, and Z(sign O)X5Xo(1) - - - Xg(4)+)

It turns out that almost all identities for sl, follow from (x,x,)}x,x,)x, and
the Lie standard identity gives only the details in lower degrees.

3.3.4. THEOREM [15]. Let U<a L be the T-ideal of all polynomial identities for
sl, and let V be the T-ideal of L generated by (x,x,)(x,x3)x,. Then all
homogeneous elements of U of degree > 7 are contained in V and

(UALYVA Ly = No2, 13)+N,(22, 12).

The proof is based on a result by Nikolaev [45] which asserts that the
polynomial identities in three variables for sl, follow from (x,x,)(x,x,)x,, and
on the decomposition of L& and L{” into a sum of irreducible GL_-modules.

3.4. The 2 x2 matrix algebra

The centre of the 2 x 2 matrix algebra M,(K) consists of scalar matrices
only and, as vector spaces, M,(K) = K ®sl,. Again the basis r,, r,, ry of sl,
will be good if it can be transformed to a basis s, s,, s; corresponding to
a diagonal matrix of the Killing form of sl,. The proof of the following result
makes use of Theorem 3.1.5 and is similar to the proof of Theorem 3.3.1.

34.1. THEOREM [10]. B, (var M,(K)) = K+) N,(4,, 4,, A;), where the
summation is over all A =(4,, 4,, A;) # (1%) with 4, > 0.

As a consequence of Corollary 2.2.2 and Theorem 3.4.1 we obtain
immediately

3.4.2. THEOREM [13, 26, 51]. Let F,(var M,(K))= K+ k(4)N,(4),
A=Ay, ...» 4,) Then: (i) k() =0 if Ai;#0; (i) k(4,)=1; () k(1,, 4,)
=4 =2+ DA, i 4, > 0, (iv) k(4. 1, 1, ) = (A + 1) 2—24,) =15 (v) k(4y, 4,
Ay A) = (A — A, + D) (A, — A3+ 1)(A;— A, + 1) in all other cases.
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Razmyslov [52] has proved that var M,(K) can be defined by a system of
9 polynomial identities of degree < 6. In [9] this system has been reduced to
4 identities. Using the fact that Razmyslov’s basis for var M,(K) consists of
polynomial identities of degree < 6 (but not the explicit form of the identities)
and Theorem 3.4.1, computations in BA!> and BA'® have given a minimal

generating set for T(M ,(K)).

3.4.3. THEOREM [11]. The polynomigls [[x,, x,1% x,] and Sy(x,, x,, X3, X,)
from the free associative algebra form a basis for the identities of M,(K).

Extensively studied objects in ring theory are generic matrix rings and
some related rings. Let @ = K[&7|i,j=1,...,k, r=1,2,...] be the polyno-
mial algebra in &{7. The algebra of k x k generic matrices R,(Y) is the unitary
subalgebra of M, () generated by the matrices Y= {y, = (&M)Ir=1,2,...}. It
is easy to see that R,(Y) = F*(var M,(K)). The trace ring R,(Y) is generated by
R.(Y) and all the traces from R,(Y). The description of R.(y,,-..,y,) as
a GL, -module is given in [26] and explicit computations with R,(Y) have been
done in several papers ([26, 51] etc.). Here we combine the exposition of [51]
with the approach of Section 3.1.

3.4.4. THEOREM [51]. Let R,(Y) be the 2x2 trace ring. Then:
(i) The following K-algebra isomorphism holds:

Ry(Y) = K[z, 25, ..]* @ K(XO*/U,

where U =/{f(x,..., x,)e K{(X>*| f(b,,...,b,)=0 for all b,,...,b,
ésl, = M,(K)}.

(i) K{xpy ooy X /(K Cxpy ooy X0 nU) =Y N, (&), 4;, A3), where the
summation is over all partitions A = (4, A5, 43).

(iii) As a GL,-module, the centre of R.(y,,...,¥,) is isomorphic to
K[zy, ..., 2,0 @2 N, Qu, + 43, 2u,+ 45, 4y).

Sketch of proof. (i) The Cayley-Hamilton theorem yields that for
a 2x2 matrix u,

w2 —(truwyu+(triu—tru*)/2 =0,
hence tru? = 2u®—2(trwu+tr’u. Since truv = troy, the linearization of this
equation gives
truv = uv +vu — (tr u)v — (tr v)u + (tr u)(tr v).

Therefore, R,(Y) is generated by y, and try,, i = 1, 2, ... But y, = try,/2+y?,
where y? is a matrix with zero trace, ie.

R.’2(}’) =K@, tryli=1,2,..0%
~ K{try,li=1,2,..J*®@K{OPli=1,2,..)%

3 — Banach Center L. 26, cz. |
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Since the traces of y; are algebraically independent, K[try,|i=1,2,...]% =
K[z,,2z;,...]%. On the other hand, it is easy to prove that
KGRli=1,2,...5% = K{X)*/U, where U is the set of all weak polynomial
identities of the pair (M,(K), sl,) (see [52] for details), i.e.

U={f(x(,.... X, )EKLX>¥*| f(b,, ..., b,) =0 forall besl, =« M,(K)}.

(i) Repeating verbatim the arguments of the proof of Theorem 3.3.1 and
Corollary 3.3.2 we see that the standard generator f,(x,, x,, x,) of A, /(4,, " U)
is a weak identity for the pair (MyK),sl,) if and only if
fia,, a,,a3)=0, a,,a,,a, being defined in (4). It follows that
A (A, Uy < Y N (4, 45, A3). Since

g;,(xp X3, x3) = Séa(-xp X3, x3)S%.2_h(x1, xz)x{‘_;t2

is a standard generator for N_(4,,4,,4;) and g,(a,, a,,a;) #0, all
N, (A, 45, 4,) do enter the decomposition of K(y?, ..., y2>* and this gives the
desired result.

(i) The proof makes use of the fact that, in the notation of (ii),
g,(a,, a,, a;) is a scalar matrix if and only if 4, -4, and 1,—4; are even
integers.

3.5. The Jordan algebra of a symmetric bilinear form

Let V, be a vector space of dimension p with a nondegenerate symmetric
bilinear form ¢ , ). Then G, = K +V, has a structure of a Jordan algebra with
multiplication

(x+0)(B+w) = (@B+ v, wd)+(aw+fv), «,feK, v,wel,.

For p > 1, the G, form a family of simple Jordan algebras. We call the basis
ry,--., r, of V, good if it can be transformed to an orthogonal basis of V.

ror every orthogonal pasis s,, ..., s,

(s;, "')(T“'sj") = &sy'...5%,
eekK,$; =0, 1 and J, has the same parity as deg,(s;, ...)(...s; ). Since the good
bases are dense in V§, Theorem 3.1.5 allows us to establish the following result.

35.1. Tueorem [16]. (i) B,(varG,)=K+) N, (4, ..., 1), where the
summation runs over all partitions (4, ..., A)) such that 4, > 0 and at most one
of the integers 2; is odd.

(ii) ByvarG,) = [( ¥ No@P)@K+N(1)]/ T N, n).

nzh nz1

(Compare this result with (2)!)
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4. Codimensions and Hilbert series

4.1. Reductions

Let N,, and N, be GL_-submodules of F, with N, = FP, N, c F9,
N, QN = F&*9. Assuming m > p+q, define M'= P, AN, M, = P,n Ny,
M =P, ;N N,®Ny. Then the formulas

(5 H(N,®Nos by oo b)) =HN £y, . ) HIN, 5 o0, 8,
(6) dim M = dim((M' ® (M"}1 Sym(p +g)) = dim M"-dim M" (", 9)

simplify the computing of the Hilbert series of F,(U) and the codimensions of U.
Theorem 2.2.1 (iii) reduces the computing of the Hilbert series of F, (U) to that of
B, (U). A similar result holds for the codimensions.

i

4.1.1, THEOREM [13, 16, 17]. Let U be a variety of unitary algebras and
let y,(U)=dim I' (U), n=0, 2, 3, ..., be the sequence of the proper codimen-
sions of U. Then ¢, (U), y,(U); c(U, t) = Zc,,(U)t", WU, t)= Zy,,(U)t"; ‘U, =
Y e (U, §(U, 1) =Y y,(U)t"/n! are related by the following equalities:

(i) cy(U) = Y3=0(@)7(U);
(i) c(U, &) = y(U, /(1 = 0)A1-1);
(iii) &(U, 1) = &5(U, 1.

4.2. Grassmann, matrix and related algebras

The codimension of the Grassmann algebra have been computed in [37]. Here we
give an alternative proof.

42.1. THEOREM [37]. (i) ¢(E)=2""",n> I;
(i) c(varE, 1) = 12+ 1/2(1—20));
(i) G(varE, ) = 1/2 4+ e¥/2.

Proof. In virtue of Theorem 3.2.1, I'(varE)= M(1") for n even and

I'(varEy=0 for n odd. Since dimM(1")=1, we obtain y(vark,)

=1424+t*+...=1)1—1%) and H(varE, 1) = (¢'+e~")/2 and the result follows
immediately from Theorem 4.1.1.

The computing of the codimensions of the k x k matrices seems to be a very
difficult problem. The asymptotic behaviour of c,(M,(K)) has been established in
a series of papers by Regev (see [25, 56] {or references). Up till now only for 2 x 2
matrices has an explicit formula been obtained.

42.2. THEOREM [51]. () e(var M,(K), £) = (1—2t— (1 —40)2)(2e2) — /(1 — )*
+1/(1—0)—1/1—2¢);

(i) c(My(K)) = FIDin+2)—(5)+1-2"

(i) [56] c,(M,(K)) equals asymptotically 4"*!/(n(nn)!/2).



36 V. DRENSKY

Proof. We follow. the exposition of [19].
(1) In virtue of Theorem 3.4.1 it suffices to obtain an explicit formula for
g(0) =) dim M(4,, 4,, 4;)t**4:*4, By the Littlewood-Richardson rule,

ZNm(P, P)@xZNm(Q) = ZNm()'I’ Az A3)

and hence, applying (6) as in Theorem 4.1.1 (ii), g(t) = h(t/(1 —2))/(1 —t), where
h(1) =) dim M(p, p)¢**. Applying the hook formula for dim M(p, p) we get
dim M(p, p) = 2p)!/(p!(p+1)!) = (3*)/(p+1) and some calculations show that
h() = (1—(1 —4e)"2)/2e3), g(r) = (1 — t— (I — 2t — 3¢%)"/2)/(2¢2). Finally, we ob-
tain the expression for c(var M,(K), t). The assertions (ii) and (iii) are
consequences of (i).

Similar considerations allow one to compute the Hilbert series of
F,(var M,(K)). For m =2 this has been done in [29] (see also [13]). The
general case has been handled in [26] (see also [13, 39]). Here we prove the
case m = 2 only.

4.2.3. THEOREM. '
H(var My(K), t, ty) = (1 —1;) "' (1 = 1) 7M1+ 12,1 —248) (1 —1,) " (1 —2,)7Y).
Proof. We make use of Theorem 3.4.1, the Littlewood-Richardson rule

and (5):
H(B,(var My(K)), t,, t;) = H(X. N,(4y, A)— Y. Ny(n), £y, t,)

n>1
= H(} N,(p, )®x ) Ny(q)+K—K[x,, x,1*, 13, t,)
= (H Nop, p), 1y, £,)— DH(K[x,, x,1*, 1, £,) +1
= Q)P =) (1—t) (1=t;) " +1
= 1+t1t2(1—tltz)_l(l—tl)_l(-l—tz)_l

and Theorem 2.2.1(ii1)) gives the desired result.

In the same manner one can express the Hilbert series H(varsl,, ¢,, t;)
[3, 13]. _

Developing a complicated technique, including combinatorial methods
and analysis (e.g. evaluation of multiple integrals) Regev ([55, 56] and the
references there) has established the asymptotic behaviour of the codimensions
of the k» X matrices and of some related algebras. In particular, ¢, (M (K))
equals asymptotically

(211.)(1 —k)/22(1 *k?-)/zl! o (k - 1)”{”‘2 +4)/2n(1 —kz)/2k2n+2
(there are monsters not only in the theory of finite simple groups).

Many interesting results have been obtained on the module structure and
the Hilbert series of the trace ring R,(Y) and its centre C,(Y). It turns out that



PI-ALGEBRAS 37

as a commutative algebra C,(Y) enjoys a series of interesting properties [28]. In
particular,

4.2.4. THEOREM ([39] for k = 2, [28, 61]). H(fk(yl, s Y ti et )
=(=D%; ... Y HC 15 - es V) 1 .++s t), where d is the Krull dimension
of Ci(yy, ..-» ¥n) A similar functional equation holds for R, (y,, ..., ¥,)-

Formanek’s proof is based on the investigations of the invariants of k x k
matrices [26]; Teranishi’s approach is completely different and applies the
Cauchy integral formula to the Molien-Weyl expression for the Hilbert series
as a multiple integral. As a consequence Teranishi has evaluated
H(C (1, y2), t1, ¥,) for k'=3,4 [61, 62).

Kemer [34] has developed the structure theory of the T-ideals in the free
associative algebra. An important role in his approach is played by the matrix
algebras with entries from the Grassmann algebra. The simplest example is the
E° E!
E' E°
i,j=1,2, such that a,,, a,,€E®, a,,, a;;€E! in the canonical grading
E = E°+E' (see the proof of Theorem 3.2.1). The polynomial identities of
M, are the same as those of the tensor square E®  E. It turns out that in
some sense the properties of E®E are similar to those of M,(K). The

quantitative results on the polynomial identities of E® ¢E obtained by Popov
[47] have allowed him to find also a basis for the T-ideal T(E ®  E).

subalgebra M, =[ ] of M,(E) consisting of all 2x2 matrices (a;)),

4.2.5. THEOREM [47]. (i) I",(var EQE) =) M(4,, 27, 19, n > O, where the
summation is over all A,,p,q such that A, +2p+q=n and
(Ays 27, 19) # (n), (1764,

(i) The polynomial identities [[x, x,], [x3, X,], x5] and {[x,, x,1?, x,]
form a basis of the T-ideal T(E® E)<a K(X)*.

An approach similar to that of Theorem 4.2.2 gives the explicit formula for
the codimensions of E@E.

426. Tueorem [19). () c(varE®E, 1) = 112+ 1/{2(1 —49)'7?)
(1= 1) 4+ /(1 — ) — 1/(1 —21);

(i) c{E®E) = ")/24+n+1—2",n> 0:

(iii) c,(EQ®yE) equals asymptotically 4"/(2(rn)'/?).

Sketch of proof. It suffices to prove (i) only; then (ii) and (iii) follow
immediately. The Littlewood-Richardson rule gives

T N2, 1@, ¥ Nl = ¥ N (A, 27, 19
x B (varE®E)+ ¥ Nm)+ T N, (13*1),

n>0 k>0
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As in the proof of Theorem 4.2.2, explicit computations show that
g () =Y dim M(4,, 27, 1M ¥ 2249 = b (11— )1 —1),

where h,(t) =) dim M(2??, 129*?* 24 The application of the hook formula
gives h,(f) = (1+(1 —4¢%)"'?)/2. Then the proof is completed as in Theorem
422,

There exist T-ideals of K{X ) generated by important polynomial identities
and which are very close to the T-ideals T(M,(K)) and T(E®E). These
identities are the standard identity S,(x,, x,, x5, x,), the central-by-metabelian
identity [[x,, x,], [x3, x,], x5] and the Hall identity [[x,, x,]?, x,] handled
by Kemer [33], Popov [48] and Nikolaev [44], respectively. Since these three
polynomials belong to I'4,, n = 4, 5, without loss of generality we consider
varieties of unitary algebras.

4.2.7. THEOREM. Let S, C and H be the T-ideals of K{X)* generated by
Salxy, X5, Xa, x4), [[xy, %51, [X3, x4, xs5] and [[x,, x,1%, x3], respectively.
Then:

() [33] (B4, 0 S)/(BA, N T(M,(K))) = N,(3, 2)+ N,(3%;

(i) [48] (BA,, N C)(BA, N T(E®E)) = N,(3, 2)+ N, (3);

(iii) [44] (BA,,nHY(BA, ~T(M,(K)) = N,(3,1%)+2N (2, 1)+ N, (3,13
+2N,, (2%, 1)+ N, (2, 19+ N, (2%, 1)+ Y 4t N, (179,

By the way, in the proofs of (ii) and (iii) the authors have used the
decomposition of the Sym(n)-modules I'd, for n < 8. As an immediate
consequence of Theorems 4.2.7 and 4.1.1 we obtain

4.2.8. CorROLLARY [19]. (i) c,(S) = ¢,(M,(K))+5(2)+ 5(3);
(i1) ¢,(C) = c,(E®gE)+5(5)+ 5(5);
(i) c,(H) = c,(M,(K)+2" 1 —1—(3)+14(2)+33(3)+ 14(3), n > 0.

The description of B, (var G ) for the variety of Jordan algebras generated
by G (see Theorem 3.5.1) gives an interesting formula for the codimensions of
G, and G,. It seems very intriguing that there exists a connection between the
asymptotic behaviour of ¢ (G_) and the Hermite polynomials (see [16] for
details).

4.2.9. THEOREM [16]. (i) c(varG_, 1) = (1 +t)exp(t +£%/2)+ ¢' —e*';
cGL) =g"t V(1) +1-2", where g(t) = exp((t*—1)/2);

(i) ¢, (G.) = O((cn)*'?), where ¢ = exp(n—1);

(1") limn—'w(cn(Gp))I/" = p+ 1,

(iv) [18] c(var Gy, 1) = (t— 1+ (e -+ 1)/(1 — 42)2)/20)— t/(1 — 1).

4.3. Products of T-ideals

In this section we deal with unitary associative algebras only. For two
algebras P and Q, let U = T(P) and V = T(Q) be the corresponding T-ideals of
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A* = K{X)*. For a (P, Q)-bimodule M, it is easy to see that R = [I; g:l is
a K-algebra and T(R) > W= UYV. Under some additional conditions (see [40,
1, 64]), T(R) = W. For example [40] this holds if P = F*(U),Q = F*(V),
M = S[US+SV), where S=5,A%y,A* is a free (A*, A%)bimodule of
countable rank. Another example is the algebra UT/(K) of all pxp
upper-triangular matrices when T(UT,(K)) = (T(K))’ = [4*, A*]? [42].

We discuss the following problem. How to calculate the numerical
invariants of the T-ideal W= UV if we know those of U and V? The following
results give the connection between the Hilbert series of the relatively free
algebras of U, V and W and their exponential codimension series.

4.3.1. THEOREM [27]. Let V, U be T-ideals of Ay = K{x,, ..., x,,»* and let
W= UV. Then

(7 HW,t,....t,)=HU,t,, ....t,)+HV,t,..., t,)
+(+...+t,—VDHWU, t,, ...t JHV, t,, ..., t,).
Proof (see e.g. [17]). Since F¥(U)= A%/U and
H(FA(U)ty, .., t,)+HWU,ty, ..., t,)=H(Am t,, ..., t) =1 (1 =@, +...+1,)),
the equality (7) is equivalent to
HU, t;, ..., t JHV, t,, ..., t, ) =HUV, t,, ..., t YH(A}, t,, ..., t,).

The free algebra A,% is a FIR-ring and every homogeneous ideal of 4, has a free
system of homogeneous generators as a left (or right) 4, -module. Hence there
exist multthomogeneous polynomials u,, #,,... and v, v,,... such that
U= uAn, V=) Asv, and the sums are direct. Therefore

HU,ty, ..., t) =Y t"HA¥ ¢, ..., 1),

where ¢l =& . i, p = deg, u;, and similarly for H(V,¢,, ..., t,). Since
UV= Y u(An)’v; and (An)* = Ay, it follows that UV=7}) uAyv,
HUV, ty, ..., t,) =Y "l H(4% t,, ..., t,) and this gives the desired result.

43.2. THEOREM [17]). The exponential codimension series of U, V and
W= UV satisfy the equation

EW,y=¢U, )+ &V, )+(t—1)cU, t)é(V, t).

Proof. Since ¢, (W) equals the coefficient of ¢, ... t, in HAF nW,1,,..., 1),
Theorem 4.3.1 gives

c,(W) = ¢,(U)+c,(M)+ Y. (n/(n! k1 n—k— 1))} U) a1 (V)
k

— 3 (k! (n—B))c, (U)ca-i(V).
k
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Hence
EW, t)=¢U, 4+c(V, +—1DY Y c,(U)e, Mk (n—k)))

and this completes the proof because

Y'Y eo(U)en - (V(kin—k)Y) = EU, DE(V, 1.
n k

The simplest application of Theorem 4.3.2 is when W, = U? and U is the
commutator ideal of A¥, i.e. U = varK. In this case the standard notation for
W, is N,A, W, is defined by the identity [x,, x,] ... [X3,-1, Xz,] and this
variety enjoys many interesting properties [38]. Since ¢, (U)=1 and
é(U, r) = €, it is easy to establish the following consequence of Theorem 4.3.2.

433. COROLLARY [17]. &(N, A, 1) = & Y PZ5(1+(t—1)e').
Similarly, for the T-ideal U = T(E) Theorem 4.2.1 gives

4.34. CorROLLARY [17]. For the variety V,= N, varE with a T-ideal
V, = (T(E))p generated by [x, x5, X3] ... [x3,-2, X3,-1, X3,]

P
c(V,, 1) = Y fip()e*™,
k=0

where the fi,(t) are polynomials in t and f,,(t) = (t—1)p~1/20.

Very often the asymptotic behaviour of the codimension sequence of
a T-ideal is more important than the explicit formula. For example, for an
associative Pl-algebra R Regev [54] has established that ¢,(R) <d" for
a suitable d and this has allowed him to show that a tensor product of
PI-algebras is PI again. Another application is due to Kemer [32] who has
used the asymptotic behaviour of the cocharacter sequence to give the final
form of a result of Razmyslov [53] on the nilpotency of the Jacobson radical of
a finitely generated PI-algebra (see Theorem 1.5.1).

An estimate of the asymptotics of the codimension sequence c,(U) of
a variety U is lim sup(c,(U))'/". Clearly, 1/lim sup(c,(U))'/" equals the radius of
convergence of the series c(U, ). It is unknown if lim,, ,(c,(U))*/" exists for all
U but in the few cases when it is explicitly calculated always lim,_, ,(c,(U))'/"
does exist and is an integer. We suggest lim,_, . (c,(U))'"" as a measure of the
complexity of U.

435. DEFINITION [17]. We call the variety U extremal if lim,_ ,(c,(U))'"
exists and for any proper subvariety V of U,
lim (¢, (U))" > lim sup(c,(V))*".
Freely restated, this means that U is more complicated than its sub-
varieties. The most important examples of extremal varieties are the matrix
varieties. '
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4.3.6. THEOREM [26, 55, 17]. The varletles of associative algebras var M ,(K)
are extremal: llm,,qm(c (M(K)))V" = p* and for every proper subvartety v,

lim sup(c, (V)" < p*—1.

It turns out that the varieties of Corollaries 4.3.3 and 4.3.4 are also
extremal.

43.7. THeorReM [17]. Let W, and V, be the varieties of associative (not
necessarily unitary) algebras defined by the identities [x,, x,] ... [Xsp-1, X2p]
and [x,, x,, x3] ... [X3p—2, X3p—1, X3p), respectively. Then W, and V, are
extremal:

(i) Ty (e, (W) " = p, lim, o (c, (V)" = 2p;
(ii) For any proper subvarieties U, c W, and U, c ¥,

limsup(c,(U)"" < p—1, limsup(c,(U,))'" <2p—1.

The proof is based on a careful investigation of the cocharacter sequences
of the subvarieties of W, and ¥, In particular, the decomposition of P (W,)
into a sum of irreducible Sym(n)-submodules is of the form
P,(W,) =3 k()M(4), where A =(4,, ..., 4) and A,,, and s are bounded by
constants depending on p only and 4, is not bounded. On the other hand, for
every proper subvariety U, of W,, P (U,) = Y k,(AM(A), where 4, 1s bounded
by a constant depending on U,. Then an estimate of the dimensions of the
Sym(n)-modules allows one to obtain limsup(c,(U,))""* < p—1. The bound for
U, =V, is similar. We refer to [17] for details.

With some modifications the result for W, holds for Lie algebras as well
[17]. In this case W, has to be replaced by the variety 4° " N,_, A of all Lie
algebras which are solvable of class 3 and satisfy the identity (x,x,)

e+ (X2p-1X2p)-

Finally, we shall mention another important example of extremal varieties
of Jordan algebras.

4.3.8. THEOREM [36]. Let G, be the Jordan algebra of a nondegenerate
symmetric bilinear form on a vector space of dimension p. Then the varieties
varG, and varG_ are extremal:

(1) For a proper subvariety U of varG,

n—aw

lim sup(c,(U)*" < p < lim (¢,(G,)'"" = p+1.

When U is a variety of unitary algebras, lim, . ,(c,(U))""" exists and is an integer.
(i) For a proper subvariety U of varG,_
1

lim sup(e,(U))"" < o0 = lim(c,(G ).

n—+a
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