TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART 1 PWN-POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

COMPUTATIONAL TECHNIQUES FOR PI-ALGEBRAS

VESSELIN DRENSKY

Institute of Mathematics, Bulgarian Academy of Sciences Sofia, Bulgaria

Introduction

Let R be a (not necessarily associative) algebra over a field of characteristic 0 and let R satisfy a polynomial identity, i.e. R is a PI-algebra. When studying the properties of R, the following natural question arises: How many identities of R are there? Of course, we have to decide how to measure the quantity of the polynomial identities. There are some numerical invariants of R as the codimension and cocharacter sequences and the Hilbert series of the T-ideal of R and they are objects of intensive investigation.

The main purpose of this paper is to survey and present from a unique point of view some recent quantitative results on PI-algebras. Using the powerful technique of the representation theory of the symmetric and general linear groups we present effective computing methods for concrete PI-algebras. In particular, we apply these methods for studying the polynomial identities of some important associative, Lie and Jordan algebras.

The paper is organized as follows. Section 1 gives the necessary background on PI-algebras and representation theory of the symmetric and general linear groups. Sections 2 is devoted to the free Lie and commutative algebras, some other relatively free algebras and to an important reduction of the computations in the case of varieties of unitary algebras. Section 3 studies the polynomial identities of algebras which in some sense are similar to the 2×2 matrix algebra. Section 4 handles the calculation of the codimensions of *T*-ideals and the Hilbert series of relatively free algebras. For other applications of the presented computational techniques we refer to the surveys [5, 21, 22].

1. The background

1.1. Varieties of algebras

We fix some notation: K is a field of characteristic 0, $X = \{x_1, x_2, ...\}$, $F = K\{X\}$ is the absolutely free algebra of infinite rank. The elements of F are

2 Banach Center t. 26, cz. 1

polynomials in noncommutative and nonassociative variables and with zero constant terms. Usually we consider the products left-normed; hence $x_1x_2x_3 = (x_1x_2)x_3$.

The element $f(x_1, ..., x_n) \in K\{X\}$ is called a polynomial identity for the K-algebra R if $f(r_1, ..., r_n) = 0$ for all $r_1, ..., r_n \in R$. The class U of all algebras satisfying a given system of identities $\{u_i(x_1, ..., x_{n_i}) | i \in I\}$ is called a variety of algebras. The set of all polynomial identities U satisfied by the variety U (respectively by the algebra R) is a two-sided ideal of $K\{X\}$ called a T-ideal and denoted by T(U) (respectively T(R)). We use the same letters U and U respectively for the T-ideals and the related varieties. The algebra $F(U) = K\{X\}/T(U)$ (with the same set of generators $X = \{x_1, x_2, ...\}$) is the relatively free algebra of U. We denote by $F_m(U)$ the subalgebra of F(U) generated by the subset $\{x_1, ..., x_m\}$. Moreover, for a subspace Q of F we denote by Q(U) the image of Q under the canonical homomorphism $F \to F/U = F(U)$.

1.1.1. Examples. The class of all associative algebras forms a variety defined by the identity $(x_1x_2)x_3-x_1(x_2x_3)$; the varieties of all Lie and all Jordan algebras are determined by the sets of identities $\{x_1^2, (x_1x_2)x_3 + (x_2x_3)x_1 + (x_3x_1)x_2\}$ and $\{x_1x_2-x_2x_1, (x_2x_1)(x_1x_1) - (x_2(x_1x_1))x_1\}$, respectively, etc.

We denote by P_n the vector space of all multilinear polynomials in $K\{X\}$, $P_n = \{\sum a_{\sigma d}(x_{\sigma(1)}...)(...x_{\sigma(n)})|a_{\sigma d} \in K\}$, where the summation runs over all permutations σ of the symmetric group $\mathrm{Sym}(n)$ acting on $\{1,\ldots,n\}$ and over all distributions d of brackets. It is well known that every variety U can be determined by its multilinear identities. Let $P_n(U) = P_n/(P_n \cap T(U))$, $n = 1, 2, \ldots$ The sequence of codimensions of the variety U (or of the T-ideal U) is defined by $c_n(U) = c_n(U) = \dim P_n(U)$, $n = 1, 2, \ldots$ Additionally, the generating function $c(U, t) = \sum c_n(U)t^n/n!$ and the exponential generating function $\tilde{c}(U, t) = \sum c_n(U)t^n/n!$ are called the codimension series and the exponential codimension series of U, respectively.

The relatively free algebra of rank m is a graded vector space, $F_m(U) = \sum F_m^{(n)}(U)$, where $F_m^{(n)}(U)$ is the homogeneous component of degree n. The Hilbert series of $F_m(U)$ is defined by $H_m(U, t) = H(F_m(U), t) = \sum \dim F_m^{(n)}(U)t^n$; $F_m(U)$ has another grading counting the degree in any variable and the corresponding Hilbert series is

$$H(U, t_1, ..., t_m) = \sum \dim F_m^{(n_1, ..., n_m)}(U) t_{i_1}^{n_1} ... t_m^{n_m}$$

Clearly $H_m(U, t) = H(U, t, ..., t)$ (with $m \ t$'s).

1.1.2. PROPOSITION. Let U be a T-ideal in $K\{X\}$ and let \tilde{K} be an extension of the base field K. Then $\tilde{F}(\tilde{U}) = \tilde{K} \otimes_K F(U)$ is the relatively free algebra of the variety U of \tilde{K} -algebras defined by the same system U of polynomial identities (assuming that $K\{X\}$ is canonically embedded into $\tilde{K}\{X\} = \tilde{K} \otimes_K K\{X\}$).

This proposition allows one to extend the base field and, if necessary, consider K algebraically closed.

1.2. Representations of Sym(n) and GL_m

The vector space P_n has a natural structure of a left Sym(n)-module defined by

$$\sigma: (x_{i_1} \ldots)(\ldots x_{i_n}) \to (x_{\sigma(i_1)} \ldots)(\ldots x_{\sigma(i_n)}), \quad \sigma \in \operatorname{Sym}(n),$$

and for a long period this was the main tool for quantitative investigation of the polynomial identities (see [54, 57, 25] for details). It is known that the representations of $\operatorname{Sym}(n)$ are related to the polynomial representations of the general linear group GL_m . The canonical action of GL_m on the *m*-dimensional vector space spanned by x_1, \ldots, x_m can be extended diagonally to $F_m = K\{x_1, \ldots, x_m\}$ by

$$g: (x_{i_1} \ldots)(\ldots x_{i_n}) \to (g(x_{i_1}) \ldots)(\ldots g(x_{i_n})), \quad g \in GL_m.$$

Although this action was used incidentally before 1980, its systematical application began in [5, 10] (see also [26] for the formalism of the equivalence of the application of Sym(n) and GL_m).

The irreducible representations of $\operatorname{Sym}(n)$ and GL_m are described by partitions and Young diagrams [31, 65]. For a partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ of n, $\lambda_1 \ge \ldots \ge \lambda_r \ge 0$, $\lambda_1 + \ldots + \lambda_r = n$, we consider the corresponding Young diagram $[\lambda]$, the number $n = ||\lambda||$ of boxes of $[\lambda]$ and the related irreducible $\operatorname{Sym}(n)$ -module $M(\lambda)$ and GL_m -module $N_m(\lambda)$. In order to obtain generators for the irreducible submodules of P_n and F_m we use the following device:

- (i) As a GL_m -module, the homogeneous component $F_m^{(n)}$ is a direct sum of the GL_m -submodules $N_{m,d}^{(n)}$, where d is a fixed distribution of brackets and $N_{m,d}^{(n)} \stackrel{\mathscr{Q}}{=} A_m^{(n)}$, $A_m = K\langle x_1, \ldots, x_m \rangle$ being the free associative algebra. Here the GL_m -module isomorphism φ deletes the brackets in $N_{m,d}^{(n)}$.
- (ii) First, we determine a generator for the irreducible submodules of $A_m^{(n)}$. We define an action of Sym(n) on $A_m^{(n)}$ by

$$(x_{i_1} \dots x_{i_n}) \varrho^{-1} = x_{i_{\varrho(1)}} \dots x_{i_{\varrho(n)}}, \quad \varrho \in \text{Sym}(n).$$

Then every submodule $N_m(\lambda)$ of $A_m^{(n)}$ is generated by a nonzero element

(1)
$$f(x_1, ..., x_r) = \prod S_{r_i}(x_1, ..., x_{r_i}) \sum a_{\varrho} \varrho,$$

where $a_{\varrho} \in K$, ϱ runs over Sym(n), $S_{\varrho}(x_1, \ldots, x_{\varrho}) = \sum (\text{sign}\,\sigma)x_{\sigma(1)} \ldots x_{\sigma(\varrho)}$ is the standard polynomial and r_1, \ldots, r_k are the lengths of the columns of the diagram $[\lambda]$.

(iii) An arbitrary irreducible GL_m -submodule $N_m(\lambda)$ of F_m is generated by an element

$$\sum f_d(x_1,\ldots,x_r),$$

where f_d is of the form (1) and the summation runs over all distributions of brackets. We call (1') a standard generator of $N_m(\lambda)$. It follows from the

representation theory of GL_m that the standard generator is uniquely determined up to a multiplicative constant.

(iv) A generator of the irreducible $\operatorname{Sym}(n)$ -submodule $M(\lambda)$ of P_n can be obtained by a linearization of a suitable standard generator of $N_m(\lambda)$.

For an arbitrary T-ideal U of F, the subspaces $U \cap P_n$ and $U \cap F_m$ are $\operatorname{Sym}(n)$ - and GL_m -modules, respectively. Hence the relatively free algebra F(U) inherits the actions of $\operatorname{Sym}(n)$ and GL_m . In particular, the $\operatorname{Sym}(n)$ -character sequence $\chi(P_n(U))$, $n=1,2,\ldots$, is called the *cocharacter sequence* of U. The following assertion gives the equivalence of the application of the representation theory of $\operatorname{Sym}(n)$ and GL_m .

- **1.2.1.** Theorem [5, 10]. (i) Let Λ and Λ^* be the lattices of submodules of $F_m^{(n)}$ and P_n , respectively (with respect to the sum and intersection of submodules). Then there is a lattice monomorphism $\psi \colon \Lambda \to \Lambda^*$ such that $\psi(N_m(\lambda)) = M(\lambda)$ and a generator of $M(\lambda)$ is obtained by a linearization of the standard generator of $N_m(\lambda)$. The image of $\psi(\Lambda)$ coincides with $\sum M(\lambda)$, where the diagrams $[\lambda]$ have at most m rows. In particular, ψ is an isomorphism for $m \ge n$.
- (ii) For every variety U, $P_n(U)$ and $F_m^{(n)}(U)$ have the same module structure: If $P_n(U) = \sum k(\lambda)M(\lambda)$, then $F_m^{(n)}(U) = \sum k(\lambda)N_m(\lambda)$.

It turns out that for concrete computations the representations of GL_m are more convenient than those of Sym(n). For example, the polynomial identities $h(x_1, \ldots, x_n) = \sum x_{\sigma(1)} \ldots x_{\sigma(n)}$ and x_1^n from $A_n^{(n)}$ are equivalent and generate M(n) and $N_n(n)$ respectively but x_1^n is written more compactly. Additionally, the representations of GL_m allow the classical invariant theory to be applied to PI-algebras (see e.g. [26, 50]).

For a multihomogeneous polynomial $f(x_1, \ldots, x_m)$ we denote by

$$f(x_1, y_{11}, \ldots, y_{1n_1}|\ldots|x_m, y_{m1}, \ldots, y_{mn_m})$$

the partial linearization of $f(x_1, ..., x_m)$ which equals the component of $f(x_1 + y_{11} + ... + y_{1n_1}, ..., x_m + y_{m1} + ... + y_{mn_m})$ multilinear in y_{ij} . The following result allows one to find standard generators of $N_m(\lambda)$.

1.2.2. THEOREM [36]. Let $\lambda = (\lambda_1, \ldots, \lambda_r)$ be a partition and let $f(x_1, \ldots, x_r)$ be a nonzero polynomial from F_m which is homogeneous of degree λ_i in x_i , $i = 1, \ldots, r$. Then f is a standard generator of $N_m(\lambda)$ if and only if $f(x_1 | \ldots | x_j, x_i | \ldots | x_r) = 0$ for every pair (i, j), $1 \le i < j \le r$.

In the representation theory of GL_m , the role of characters of GL_m is played by the Schur functions $S_{\lambda}(t_1, \ldots, t_m)$ [41]. They are symmetric polynomials from $K[t_1, \ldots, t_m]$ and

$$S_{\lambda}(t_1, \ldots, t_m) = \sum a_i t_1^{i_1} \ldots t_m^{i_m} = H(N_m(\lambda), t_1, \ldots, t_m), \quad N_m(\lambda) \subset A_m^{(n)}.$$

The coefficient a_i equals the number of semistandard λ -tableaux with content $i = (i_1, \ldots, i_m)$, i.e. the Schur functions can be obtained in a combinatorial way

(see Section 1.3). It is known that the Hilbert series of a GL_m -module determines the module uniquely. In particular, $H(F_m(U), t_1, ..., t_m) = \sum k(\lambda)S_{\lambda}(t_1, ..., t_m)$ if and only if $F_m(U) = \sum k(\lambda)N_m(\lambda)$.

1.3. The Littlewood-Richardson rule

- **1.3.1.** DEFINITION [41]. Let $\lambda = (\lambda_1, ..., \lambda_r)$, $\mu = (\mu_1, ..., \mu_s)$ and $\nu = (\nu_1, ..., \nu_r)$ be partitions, $\nu_i \ge \lambda_i$ and $||\nu|| = ||\lambda|| + ||\mu||$.
- (i) A diagram of shape $[\nu \lambda]$ is a scheme of boxes obtained from the diagram $[\nu]$ by removing the boxes of the diagram $[\lambda]$. When $||\lambda|| = 0$, $[\nu \lambda] = [\nu]$.
- (ii) A $[\nu \lambda]$ -tableau with content μ is the diagram $[\nu \lambda]$ whose boxes are filled in with μ_1 numbers $1, \ldots, \mu_s$ numbers s.
- (iii) A tableau is semistandard if its entries do not decrease from left to right in the rows and increase from top to bottom in the columns.
- (iv) The sequence w(T) is obtained from a tableau T by listing the entries of T from right to left, consecutively reading the rows from top to bottom (as in Arabic).
- (v) The sequence $w = a_1, a_2, ..., a_n$ is a lattice permutation if it contains the symbols 1, 2, ..., s and for each $1 \le k \le n$ and $1 \le i \le s-1$, the number i occurs in $a_1, ..., a_k$ no less than i+1 times.
- 1.3.2. THEOREM (The Littlewood-Richardson rule). The following isomorphism of GL_m -modules holds:

$$N_m(\lambda) \otimes_K N_m(\mu) = \sum_{\nu} c_{\lambda\mu}^{\nu} N_m(\nu),$$

where $c_{\lambda\mu}^{\nu}$ is the number of semistandard tableaux T of shape $[\nu - \lambda]$ with content μ , such that the sequence w(T) is a lattice permutation.

An important role in our concrete computations is played by the following consequence of Theorem 1.3.2.

1.3.3. COROLLARY. $N_m(\lambda_1, \ldots, \lambda_m) \otimes_K N_m(s) \cong \sum_{m} N_m(\mu_1, \ldots, \mu_m)$, where $||\mu|| = ||\lambda|| + s$ and $\mu_1 \geqslant \lambda_1 \geqslant \mu_2 \geqslant \lambda_2 \geqslant \ldots \geqslant \mu_m \geqslant \lambda_m$.

In particular, for s = 1 the corollary coincides with the branching theorem.

1.3.4. Rule. The following device allows us to obtain the standard generators of the tensor product of GL_m -modules. It is a combination of Theorems 1.2.2 and 1.3.2. Its preliminary version has been used in [14, 36]. In order to simplify the rule, we consider $N_m(\lambda)$ and $N_m(\mu)$ as submodules of $A_m^{(p)}$ and $A_m^{(q)}$, respectively, where $p = ||\lambda||$ and $q = ||\mu||$, and identify $A_m^{(p)} \otimes_K A_m^{(q)}$ with $A_m^{(p+q)}$. Additionally, we fix partitions λ , μ , ν as in the Littlewood-Richardson rule, and $f_{\lambda}(x_1, \ldots, x_m)$ and $f_{\mu}(x_1, \ldots, x_m)$ are the standard generators of $N_m(\lambda)$ and $N_m(\mu)$, respectively.

V. DRENSKY

(i) Find all semistandard tableaux $T_{\lambda}(\alpha)$ and $T_{\mu}(\beta)$ with contents $\alpha = (\alpha_1, \ldots, \alpha_m), \beta = (\beta_1, \ldots, \beta_m)$, respectively, $\alpha_i + \beta_i = \nu_i$.

(ii) For every tableau $T_{\lambda}(\alpha)$ let

$$f_{\lambda\alpha} = f_{\lambda}(x_{11}, \ldots, x_{1\lambda_1} | \ldots | x_{m1}, \ldots, x_{m\lambda_m})$$

be the linearization of f_{λ} , where $x_{ij} = x_k$, k being the (i, j)-entry of $T_{\lambda}(\alpha)$, and similarly for f_{μ} and $T_{\mu}(\beta)$.

- (iii) Write $f(x_1, ..., x_m) = \sum a_{\alpha\beta} f_{\lambda\alpha} f_{\mu\beta}$ with unknown $a_{\alpha\beta} \in K$.
- (iv) Assuming that $f(x_1 | ... | x_j, x_i | ... | x_m) = 0$ for all pairs (i, j), $1 \le i < j \le m$, obtain a linear homogeneous system for $a_{\alpha\beta}$. Any nonzero solution of this system gives a standard generator for $N_m(v) \subset N_m(\lambda) \otimes_K N_m(\mu)$.

By using additional information, this rule can be simplified for concrete cases.

1.3.5. Example. Let
$$\lambda = (2, 1), \mu = (2), \nu = (3, 1^2), f_{\lambda}(x_1, x_2) = S_2(x_1, x_2)x_1 = (x_1x_2 - x_2x_1)x_1 = [x_1, x_2]x_1, f_{\mu}(x_1) = x_1^2$$
. Then

Therefore we obtain the system

$$2a_2 + 2a_3' - a_3'' = 0,$$
 $2a_1 - a_3' + 2a_3'' = 0,$ $a_1 + a_2 = 0,$ $a_3' + a_3'' = 0,$

with a nonzero solution $a_1 = 1.5$, $a_2 = -1.5$, $a_3' = 1$, $a_3'' = -1$. Easy calculations

show that the standard generator of $N_3(3, 1^2)$ is

$$f(x_1, x_2, x_3) = S_3(x_1, x_2, x_3)x_1^2(-2id + 3(34) + 3(35)),$$

where id, (34), $(35) \in Sym(5)$.

The direct product $\operatorname{Sym}(p) \times \operatorname{Sym}(q)$ is canonically embedded into $\operatorname{Sym}(p+q)$, $\operatorname{Sym}(p)$ acting on $\{1, \ldots, p\}$ and $\operatorname{Sym}(q)$ on $\{p+1, \ldots, p+q\}$. Moreover, for a subgroup H of the group G and M being an H-module, we denote by $M \uparrow G$ the G-module induced by M. The Littlewood-Richardson rule has the following interpretation in the language of $\operatorname{Sym}(n)$ -representations.

1.3.6. THEOREM. Let $||\lambda||=p$, $||\mu||=q$ and $N_m(\lambda)\otimes_K N_m(\mu)\cong\sum c_{\lambda\mu}^\nu N_m(\nu)$. Then

$$(M(\lambda) \otimes_{\kappa} M(\mu)) \uparrow \operatorname{Sym}(p+q) \cong \sum_{\nu} c_{\lambda\mu}^{\nu} M(\nu),$$

where $M(\lambda) \otimes_{\kappa} M(\nu)$ has a structure of $\operatorname{Sym}(p) \times \operatorname{Sym}(q)$ -module.

1.4. Other products of modules

In this section we shortly discuss some other products of modules which have applications to PI-algebras.

- 1.4.1. The Kronecker product. Let λ and μ be partitions of n. Then the Kronecker (or inner) product $M(\lambda) \otimes_K M(\mu)$ of $M(\lambda)$ and $M(\mu)$ is a Sym(n)-module with a diagonal action of Sym(n). This product plays an important role for computing the cocharacter sequence of the $k \times k$ matrix algebra (see e.g. [56]).
- 1.4.2. Symmetrized tensor powers. For a GL_m -module N we consider the symmetrized tensor power

$$N \overset{s}{\otimes k} = N \overset{s}{\otimes} \dots \overset{s}{\otimes} N,$$

identifying the tensors $v_1 \otimes ... \otimes v_k$ and $v_{\sigma(1)} \otimes ... \otimes v_{\sigma(k)}$, $\sigma \in \text{Sym}(k)$, $v_i \in N$. A result of Thrall [63] (see also [41], Exercise 5, p. 45) shows that

(2)
$$N_m(2)^{\otimes k} \cong \sum N_m(2\lambda_1, \ldots, 2\lambda_m).$$

The symmetrized tensor product is a very special case of the general notion of plethysm (see [31, 41]).

1.5. Representations of Lie superalgebras

In this survey we apply the representation theory of $\operatorname{Sym}(n)$ and GL_m or equivalently, of the Lie algebra gl_m . This theory works very well when the number of rows of all the Young diagrams appearing in the decomposition $P_n(U) = \sum k(\lambda)M(\lambda)$, $n = 1, 2, \ldots$, is bounded. Generally, the number of rows increases with n and the behaviour of $P_n(U)$ cannot be studied by the representations of a fixed GL_m . Kemer (see [32, 34]) has applied \mathbb{Z}_2 -graded algebras for the investigation of associative PI-algebras. This has allowed him

to obtain important results on polynomial identities. In particular, he has built the structure theory of T-ideals in $K\langle X\rangle$ in the spirit of commutative algebra. A combination of [53] and [32] gives the following theorem whose final version is due to Braun [8].

1.5.1. THEOREM (Razmyslov-Kemer-Braun [53, 32, 8]). The Jacobson radical of every finitely generated associative PI-algebra (i.e. with nontrivial identity from K(X)) over an arbitrary field is nilpotent.

In practice, the application of \mathbb{Z}_2 -graded algebras involves the representation theory of Lie superalgebras. The formalism of representations of linear Lie superalgebras has been developed by Berele and Regev [7] and they have obtained important quantitative results in the associative case.

2. First applications

2.1. Relatively free algebras

One of the main problems in this paper is the following: How to compute the cocharacter sequence of a T-ideal or, equivalently, to find the multiplicities $k(\lambda)$ of the irreducible GL_m -submodules of $F_m(U)$? A trivial example is the free associative algebra A_m , when the $\mathrm{Sym}(n)$ -modules $PA_n \subset A$ and $K\mathrm{Sym}(n)$ are isomorphic. Therefore, $A_m = \sum (\dim M(\lambda)) N_m(\lambda)$. For small n it is possible to use the character table of $\mathrm{Sym}(n)$.

2.1.1. Example. Let PL_4 be the set of all multilinear elements of degree 4 in the free Lie algebra L. It is well known (see e.g. [4]) that PL_4 has a basis $\{x_4x_{\sigma(1)}x_{\sigma(2)}x_{\sigma(3)} | \sigma \in \text{Sym}(3)\}$. Let χ be the character of the Sym(4)-module PL_4 and let $\chi = \sum k(\lambda)\chi_{\lambda}$. Easy calculations show that $\chi(\text{id}) = \dim PL_4 = 6$, $\chi(12) = \chi(123) = \chi(1234) = 0$, $\chi((12)(34)) = -2$. The character table of Sym(4) is the following:

	id	(12)	(123)	(1234)	(12)(34)
(4)	1	1	1	1	1
(3, 1)	3	1	0	-1	-1
(2^2)	2	0	-1	0	2
$(2, 1^2)$	3	-1	0	1	-1
(1^4)	1	-1	1	-1	1

Hence we obtain a linear system for $k(\lambda)$:

$$\chi(\mathrm{id}) = k(4) + 3k(3, 1) + 2k(2^2) + 3k(2, 1^2) + k(1^4) = 6,$$

$$\chi(12) = k(4) + k(3, 1) - k(2, 1^2) - k(1^4) = 0,$$

$$\chi(123) = k(4) - k(2^2) + k(1^4) = 0,$$

$$\chi(1234) = k(4) - k(3, 1) + k(2, 1^2) - k(1^4) = 0,$$

$$\chi((12)(34)) = k(4) - k(3, 1) + 2k(2^2) - k(2, 1^2) + k(1^4) = -2.$$

The only solution of the system is $k(4) = k(2^2) = k(1^4) = 0$, $k(3, 1) = k(2, 1^2) = 1$; therefore $PL_4 = M(3, 1) + M(2, 1^2)$. In practice, bearing in mind that we are interested in solutions in nonnegative integers, it suffices to consider only a part of the equations.

2.1.2. The same example. The dimension of $M(\lambda)$ equals the number of standard λ -tableaux (i.e. the semistandard tableaux with content $(1, \ldots, 1)$). The hook formula gives another expression for dim $M(\lambda)$:

$$\dim M(\lambda) = n! / \prod (\lambda_i + \lambda'_j - i - j + 1),$$

where λ'_j is the length of the jth column of $[\lambda]$. Applying one of these two expressions for $\dim M(\lambda)$, it is easy to show that $\dim M(3, 1) = \dim M(2, 1^2) = 3$ and hence $\dim PL_4 = \dim M(3, 1) + \dim M(2, 1^2)$. Therefore, in virtue of Theorem 1.2.1 it suffices to obtain in the free Lie algebra nonzero standard generators for $N_m(3, 1)$ and $N_m(2, 1^2)$. But

$$f_{(3,1)} = (x_1 x_2 - x_2 x_1) x_1 x_1$$
 and $f_{(2,1^2)} = \sum (\operatorname{sign} \sigma)(x_1 x_{\sigma(1)})(x_{\sigma(2)} x_{\sigma(3)})$

do not vanish in L_m and this gives the desired decomposition.

This method has been used successfully to obtain similar decompositions for $P_n(U)$, $n \ge 1$, for the varieties of Lie algebras $U_1 = N_2 A \cap A N_2$ determined by the identities $(x_1 x_2)(x_3 x_4)(x_5 x_6)$ and $(x_1 x_2 x_3)(x_4 x_5 x_6)$ [10] and $U_2 = [A^2, E, E]$ defined by $(x_1 x_2)(x_3 x_4)x_5 x_6$ [43]. For other applications see [5, 22].

2.1.3. Theorem [63]. Let $L_m^{(n)}$ be the homogeneous component of degree n of the free algebra L_m . Then the following GL_m -module isomorphism holds:

$$K + A_m \cong \sum ((L_m^{(1)})^{\overset{s}{\otimes} p_1} \otimes_K \dots \otimes_K (L_m^{(r)})^{\overset{s}{\otimes} p_r})$$

where the sum is over all symmetrized tensor powers with $p_i \ge 0$.

Proof. It is known that the free associative algebra A_m coincides with the universal enveloping algebra of L_m . Let $\{g_{ij}|j=1,\ldots,d_i\}$ be a multihomogeneous basis of the vector space $L_m^{(i)}$. By the Poincaré-Birkhoff-Witt theorem, $K+A_m$ has a basis $\{\prod_i (\prod_j g_{ij}^{a_{ij}}) \big| a_{ij} \ge 0\}$. Hence the Hilbert series of $K+A_m$ equals the Hilbert series of

$$\sum ((L_m^{(1)})^{\overset{s}{\otimes} p_1} \otimes_K \ldots \otimes_K (L_m^{(r)})^{\overset{s}{\otimes} p_r}).$$

Since the Hilbert series determines uniquely the GL_m -module, the desired isomorphism holds.

Since the GL_m -module structure of $A_m^{(n)}$ is known, Theorem 2.1.3 allows one to calculate the structure of $L_m^{(n)}$. This has been done for $n \le 10$ in [63]. For example, $L_m^{(1)} = N_m(1)$, $L_m^{(2)} = N_m(1^2)$, $L_m^{(3)} = N_m(2, 1)$ and $L_m^{(4)} = N_m(3, 1)$

V. DRENSKY

 $+N_m(2, 1^2)$. Therefore

$$A_{m}^{(5)} = (L_{m}^{(1)})^{\overset{s}{\otimes} 5} + (L_{m}^{(1)})^{\overset{s}{\otimes} 3} \otimes_{K} L_{m}^{(2)} + (L_{m}^{(1)})^{\overset{s}{\otimes} 2} \otimes_{K} L_{m}^{(3)}$$

$$+ L_{m}^{(1)} \otimes_{K} (L_{m}^{(4)} + (L_{m}^{(2)})^{\overset{s}{\otimes} 2}) + L_{m}^{(2)} \otimes_{K} L_{m}^{(3)} + L_{m}^{(5)}$$

$$= N_{m}(5) + N_{m}(3) \otimes_{K} N_{m}(1^{2}) + N_{m}(2) \otimes_{K} N_{m}(2, 1)$$

$$+ N_{m}(1) \otimes_{K} ((N_{m}(3, 1) + N_{m}(2, 1^{2})) + (N_{m}(2^{2}) + N_{m}(1^{4})))$$

$$+ N_{m}(1^{2}) \otimes_{K} N_{m}(2, 1) + L_{m}^{(5)}$$

and bearing in mind that $A_m^{(5)} = N_m(5) + 4N_m(4, 1) + 5N_m(3, 2) + 6N_m(3, 1^2) + 5N_m(2^2, 1) + 4N_m(2, 1^3) + N_m(1^5)$ we establish

$$L_m^{(5)} = N_m(4, 1) + N_m(3, 2) + N_m(3, 1^2) + N_m(2^2, 1) + N_m(2, 1^3).$$

The standard generators of $N_m(\lambda) \subset L_m^{(n)}$ for $n \le 6$ have been obtained in [10, 12]. Another approach to the free Lie algebra is given in [35] (see also [4]).

2.1.4. Example. Let C_m be the free commutative algebra of rank m, i.e. the relatively free algebra $F_m(C)$ of the variety defined by the identity $x_1x_2-x_2x_1$. It follows from [58] that if $C_m^{(i)}$ has a basis $\{u_{ij}|j=1,\ldots,d_i\}$, i< n, then $C_m^{(n)}$ has a basis

$$\{u_{ij}u_{n-i,k}|j=1,\ldots,d_i,\ k=1,\ldots,d_{n-i},\ i=1,\ldots,\lfloor n/2\rfloor,$$

and if $i=n-i$ then $j \leq k\}.$

As in the proof of Theorem 2.1.3,

(3)
$$C_m^{(n)} \cong \sum_{i < n-i} C_m^{(i)} \otimes_K C_m^{(n-i)} + \varepsilon C_m^{(n/2)} \otimes_K C_m^{(n/2)},$$

where $\varepsilon = 1$ for n even and $\varepsilon = 0$ for n odd. In particular, $C_m^{(1)} = N_m(1)$,

$$C_{m}^{(2)} \cong N_{m}(1) \otimes_{K} N_{m}(1) \cong N_{m}(2), \qquad C_{m}^{(3)} \cong C_{m}^{(1)} \otimes_{K} C_{m}^{(2)} \cong N_{m}(3) + N_{m}(2, 1),$$

$$C_{m}^{(4)} \cong C_{m}^{(1)} \otimes_{K} C_{m}^{(3)} + C_{m}^{(2)} \otimes_{K} C_{m}^{(2)} \cong 2N_{m}(4) + 2N_{m}(3, 1) + 2N_{m}(2^{2}) + N_{m}(2, 1^{2}),$$

$$C_{m}^{(5)} \cong C_{m}^{(1)} \otimes_{K} C_{m}^{(4)} + C_{m}^{(2)} \otimes_{K} C_{m}^{(3)}$$

$$\cong 3N_{m}(5) + 6N_{m}(4, 1) + 6N_{m}(3, 2) + 4N_{m}(3, 1^{2}) + 4N_{m}(2^{2}, 1) + N_{m}(2, 1^{3}).$$

The standard generators of the submodules can be obtained by Rule 1.3.4 or its modification for symmetrized tensor powers. Another method for computing $C_m^{(5)}$ is applied in [46]. Similar formulas can be established for the free anticommutative algebra when in (3) the symmetrized tensor square has to be replaced by the antisymmetrized tensor square.

2.1.5. Example [23]. Let S_2 be the variety of all solvable Jordan algebras of class 2 (i.e. S_2 is defined by $(x_1x_2)(x_3x_4)$). Then the vector space $F(S_2)$ has a basis

$$\{x_{i_1}x_{i_2}\ldots x_{i_n}|i_1\geqslant i_2< i_4< i_6<\ldots,\ i_3< i_5<\ldots\}.$$

The Hilbert series of the subspaces of $A_m^{(p)}$ spanned by $\{x_{j_1}x_{j_2}\dots x_{j_p}|j_1\geqslant j_2< j_3<\dots< j_p\}$ and $\{x_{k_1}\dots x_{k_p}|k_1<\dots< k_p\}$ coincide with the Hilbert series of $N_m(2,1^{p-2})$ and $N_m(1^p)$, respectively. Hence $F_m^{(2k+1)}(S_2)\cong N_m(2,1^{k-1})\otimes_K N_m(1^k)$ and $F_m^{(2k+2)}(S_2)\cong N_m(2,1^k)\otimes_K N_m(1^k),\ k\geqslant 1$, and the Littlewood–Richardson rule allows one to calculate the cocharacter sequence of the variety S_2 .

2.2. Unitary algebras

In this section we consider varieties U of unitary algebras only. We denote by $F^* = K\{X\}^*$ the absolutely free unitary algebra and by $F^*(U)$ the free algebra of the variety U. In the associative case it is known that every variety U is determined by its proper (or commutator) multilinear identities [60]. A similar result holds for arbitrary algebras. For $f(x_1, \ldots, x_m) \in F^*$, let $\partial f/\partial x_i$ be the formal derivative in x_i . For a multihomogeneous polynomial, $\partial f/\partial x_i$ equals $f(x_1|\ldots|x_i, 1|\ldots|x_m)$. We write

$$B_m = \{ f \in F_m^* \mid \partial f / \partial x_i = 0, i = 1, ..., m \} \text{ and } \Gamma_n = P_n \cap B_n$$

for the subspace of F_m^* vanishing under the formal derivations and the space of proper multilinear polynomials of degree n, respectively. It is easy to see that an analogue of Theorem 1.2.1 holds and $\Gamma_n(U)$ and $B_m^{(n)}(U)$ have the same module structure.

- **2.2.1.** THEOREM [13, 14, 16]. (i) Every polynomial from $F_m(U)$ can be uniquely written in the form $\sum b_i(x_1, \ldots, x_m)x_{i_1} \ldots x_{i_n}$, where $b_i \in B_m(U)$ and $i_1 \leq \ldots \leq i_n$.
 - (ii) Any variety U can be defined by its identities from Γ_n , n=2,3,...
- (iii) $H(U, t_1, \ldots, t_m) = H(B_m(U), t_1, \ldots, t_m) / \prod_{i=1}^m (1-t_i), H_m(U, t) = H(B_m(U), t) / (1-t)^m.$
 - (iv) The following GL_m -module isomorphism is valid:

$$F_m(U) \cong B_m(U) \otimes_K K[x_1, \ldots, x_m]^*,$$

where $K[x_1, ..., x_m]^*$ is the ordinary algebra of polynomials in commuting variables.

Since $K[x_1, ..., x_m]^* \cong \sum_{n \ge 0} N_m(n)$, Theorem 2.2.1 and Corollary 1.3.3 reduce the problem of decomposition of $F_m^*(U)$ to a similar (but simpler) problem of decomposition of $B_m(U)$. In particular:

2.2.2. COROLLARY [13]. Let

$$F_m^{\#}(U) = \sum k(\lambda_1, \ldots, \lambda_m) N_m(\lambda), \quad B_m(U) = \sum k_1(\mu_1, \ldots, \mu_m) N_m(\mu).$$

Then $k(\lambda_1, \ldots, \lambda_m) = \sum k_1(\mu_1, \ldots, \mu_m)$, where the summation is over all partitions (μ_1, \ldots, μ_m) such that $\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \ldots \ge \lambda_m \ge \mu_m$.

Especially for the free associative algebra $A_m^{\#}$ there exists a good basis of the space BA_m of proper polynomials in $A_m^{\#}$.

2.2.3. PROPOSITION [59]. The vector space $BA_m \subset A_m^*$ has the following basis: $[x_{i_1}, ..., x_{i_p}] ... [x_{j_1}, ..., x_{j_q}]$, where $i_1 > i_2 \le ... \le i_p, ..., j_1 > j_2 \le ... \le j_q$, and $[u, v] = uv - vu, [u_1, ..., u_p] = [[u_1, ..., u_{p-1}], u_p]$.

Additional arguments give an expression for the GL_m -module BA_m :

2.2.4. Theorem [20]. The following GL_m -module isomorphism holds:

$$BA_m \cong \sum N_m(p_1-1, 1) \otimes_K \dots \otimes_K N_m(p_r-1, 1),$$

where the summation runs over all integers $p_i \ge 2$, r = 0, 1, ...

In particular, modulo the T-ideal of A_m generated by $[x_1, x_2][x_3, x_4]$, the commutators $[x_{i_1}, \ldots, x_{i_p}]$, $i_1 > i_2 \le \ldots \le i_p$, span the module $N_m(p-1, 1)$. Hence Rule 1.3.4, Proposition 2.2.3 and Theorem 2.2.4 allow one to obtain the standard generators of the irreducible submodules of $BA_m^{(n)}$. For $n \le 6$ this has been done in [12], for n = 7 in [49] and for n = 8 partially in [20].

3. Simulation of 2×2 matrices

3.1. Algebras with good bases

The three-dimensional real vector space \mathbb{R}^3 with the usual scalar and vector products enjoys the following properties:

- (i) For every basis f_1 , f_2 , f_3 of \mathbb{R}^3 the standard process of orthogonalization gives an orthogonal basis e_1 , e_2 , e_3 .
- (ii) Let $g(x_1, x_2, x_3) = (x_{i_1} \times ...) \times (... \times x_{i_n})$ be a monomial (with respect to the vector product) of degree d_i in x_i . Then $g(e_1, e_2, e_3) = \varepsilon e_1^{\delta_1} \times e_2^{\delta_2} \times e_3^{\delta_3}$, where $\varepsilon = 0, \pm 1, \ \delta_i = 0, 1, \ \delta_i \equiv d_i \pmod{2}$ (and $e_1^0 \times e_2^0 \times e_3^0 = 0$).

It turns out that these simple properties of \mathbb{R}^3 play an important role in the investigation of the polynomial identities of 2×2 matrices [10]. Here we give a generalization which works successfully in several different cases.

In virtue of Proposition 1.1.2, we assume that the base field is algebraically closed. We make use of the Zariski topology [30, pp. 36-37]. Let u_1, \ldots, u_k be a fixed basis of a vector space W, $K[y]^* = K[y_{ij}|i=1,\ldots,k,\ j=1,\ldots,m]^*$ the polynomial algebra over K and Q a subset of $K[y]^*$. The set of all m-tuples of vectors $(v_1,\ldots,v_m)\in W^m$, $v_j=\sum_{i=1}^k \xi_{ij}u_i,\ \xi_{ij}\in K$, such that $g(\xi_{ij})=0$ for every $g(y_{ij})\in Q$ is closed in the Zariski topology. Any nonempty open subset is dense in this topology. Hence a polynomial function which vanishes on an open subset vanishes everywhere. In particular, if R is a finite-dimensional algebra and

 $f(x_1, ..., x_m) \in K\{X\}$ and $f(r_1, ..., r_m) = 0$ on a nonempty open subset of R^m , then $f(x_1, ..., x_m)$ is a polynomial identity for R.

3.1.1. DEFINITION. Let R be a finite-dimensional algebra. We call the basis r_1, \ldots, r_p of R good if there exists a $p \times p$ upper-triangular matrix $U = (\alpha_{ij})$, $\alpha_{ii} = 1$, with the following property:

for any two monomials $g_1(x_1, \ldots, x_p)$, $g_2(x_1, \ldots, x_p) \in K\{X\}$ of degree d_j in x_j there exist $\eta_1, \eta_2 \in K$, $(\eta_1, \eta_2) \neq (0, 0)$, η_1, η_2 depending on g_1 and g_2 only, such that

$$\eta_1 g_1(s_1, \ldots, s_p) = \eta_2 g_2(s_1, \ldots, s_p), \text{ where } s_j = \sum_{i=1}^j \alpha_{ij} r_i, j = 1, \ldots, p.$$

3.1.2. THEOREM. Let R be a finite-dimensional algebra, $\dim R = p$ and let the set of all good bases in R be dense in the Zariski topology in R^p . Then for the variety var R generated by R the GL_m -module $F_m(\operatorname{var} R)$ is a submodule of $\sum N_m(\lambda_1,\ldots,\lambda_p)$, i.e. the multiplicities of the irreducible submodules $N_m(\lambda)$ of $F_m(\operatorname{var} R)$ equal 0 or 1 and are zero if $\lambda_{p+1} \neq 0$.

Proof. Let $F_m(\text{var }R) = \sum k(\lambda)N_m(\lambda)$ and let $\lambda = (\lambda_1, \ldots, \lambda_q)$ be a partition, $\lambda_q \neq 0$. First, assume that q > p and that $f_{\lambda}(x_1, \ldots, x_q) \in F_m$ is a standard generator of $N_m(\lambda)$. Since arbitrary $u_1, \ldots, u_q \in R$ are linearly dependent and there is a skew symmetry in the q variables of f_{λ} (see (1) and (1')), $f_{\lambda}(u_1, \ldots, u_q) = 0$ and f_{λ} is a polynomial identity for R, i.e. $k(\lambda) = 0$ if $\lambda_{p+1} \neq 0$. Now, let $q \leq p$ and let $f'_{\lambda}, f''_{\lambda} \in F_m$ be standard generators of two isomorphic copies of $N_m(\lambda)$. Let r_1, \ldots, r_p be a good basis and s_1, \ldots, s_p be the related vectors from Definition 3.1.1. Therefore, for suitable $\beta_{ij} \in K$, $r_1 = s_1$, r_2 $= s_2 + \beta_{12}s_1, \dots, r_p = s_p + \beta_{1p}s_1 + \dots + \beta_{p-1,p} s_{p-1}.$ Bearing in mind the skew symmetry in (1) and (1') we obtain $f'(r_1, \ldots, r_q) = f'(s_1, \ldots, s_q)$, $f''(r_1, \ldots, r_q) = f''(s_1, \ldots, s_q)$. Since f'_{λ} and f''_{λ} are multihomogeneous of degree λ_i in x_p Definition 3.1.1 gives that either $f'_{\lambda}(s_1, \ldots, s_q) = f''_{\lambda}(s_1, \ldots, s_q) = 0$ or $f'_{\lambda}(s_1, \ldots, s_q) \neq 0$ and there exists $v \in K$, $v \neq 0$, such that $f''_{\lambda}(s_1, \ldots, s_q)$ $-vf'_{\lambda}(s_1, ..., s_q) = 0$. Hence $f_{\lambda}(x_1, ..., x_q) = f''_{\lambda}(x_1, ..., x_q) - vf'_{\lambda}(x_1, ..., x_q)$ is a standard generator of $N_m(\lambda)$ (which does not depend on the choice of the basis r_1, \ldots, r_p and $f_{\lambda}(r_1, \ldots, r_q) = 0$. Since the set of good bases is dense in R^p this yields that $f_{\lambda}(x_1, ..., x_q)$ is a polynomial identity for R. Hence the two isomorphic copies of $N_m(\lambda)$ are "glued together" in $F_m(\text{var } R)$ and $k(\lambda) \leq 1$.

The subvarieties of a variety U form a lattice with respect to the intersection and union. It is distributive if and only if $P_n(U)$, n = 1, 2, ..., are sums of nonisomorphic irreducible submodules.

3.1.3. COROLLARY. Under the conditions of Theorem 3.1.2, the lattice of subvarieties of var R is distributive.

A modification of Theorem 3.1.2 works for varieties of unitary algebras. For

V. Drensky

a unitary algebra R we define

$$Z(R) = \{z \in R \mid zr = rz, (zr)s = r(zs) = z(rs) \text{ for all } r, s \in R\}$$

and fix a decomposition $R = Z(R) \oplus S$ into a direct sum of vector spaces.

- 3.1.4. DEFINITION. Let dim $R/Z(R) < \infty$ and $R = Z(R) \oplus S$. The basis r_1, \ldots, r_n of S is good if it has the property described in Definition 3.1.1.
- **3.1.5.** THEOREM. Let $R = Z(R) \oplus S$, dim S = p and let the set of all good bases of S be dense in S^p . Then $B_m(\text{var } R)$ is a submodule of $\sum N_m(\lambda_1, \ldots, \lambda_p)$.
- **Proof.** Let $f(x_1, ..., x_m) \in B_m$ and $u_j = z_j + v_j \in R$, $z_j \in Z(R)$, $v_j \in S$, j = 1, ..., m. Since we have $\partial f/\partial x_j = 0$ and $z_j \in Z(R)$, it follows that $f(z_1 + v_1, ..., z_m + v_m) = f(v_1, ..., v_m)$, i.e. $f(x_1, ..., x_m)$ is an identity for R if and only if $f(v_1, ..., v_m) = 0$ for all $v_j \in S$. The proof is completed by repeating verbatim the arguments of the proof of Theorem 3.1.2.
- **3.1.6.** COROLLARY. In Theorem 3.1.5, the lattice of subvarieties of var R is distributive.

3.2. The Grassmann algebra

- Let V_p be a p-dimensional vector space with a basis e_1, \ldots, e_p . The Grassmann (or exterior) algebra $E_p = E(V_p)$ of V_p has a basis $e_{i_1} \ldots e_{i_q}$, $1 \le i_1 < \ldots < i_q \le p$, $q \ge 0$, and the multiplication is defined by the associative law and $e_i e_j = -e_j e_i$. The polynomial identities of $E = E_{\infty}$ have been described in [37] (see also [2]). Here we give an alternative exposition.
- 3.2.1. THEOREM. (i) Let $\Gamma_n(\text{var }E)$ be the set of proper multilinear polynomials in $F^*(\text{var }E)$. Then $\Gamma_n(\text{var }E) = M(1^n)$ for n even and $\Gamma_n(\text{var }E) = 0$ for n odd. (ii) $P_n(\text{var }E) = \sum_{q=1}^n M(q, 1^{n-q})$.
- Proof. (i) The algebra E is \mathbb{Z}_2 -graded, $E = E^0 \oplus E^1$, E^0 and E^1 being spanned by the monomials $e_{i_1} \dots e_{i_q}$ of even and odd degree, respectively. Since we have $Z(E) = E^0$ and $S = E^1 \ni s = \alpha_1 e_{j_1} + \dots + \alpha_p e_{j_p}$, $\alpha_i \in E^0$, it follows that $r_{\sigma(1)} \dots r_{\sigma(n)} = (\text{sign } \sigma)r_1 \dots r_n$ for arbitrary elements $r_1, \dots, r_n \in S$. In particular, if $r_i = r_j$, $i \neq j$, then $r_1 \dots r_n = 0$. For studying the polynomial identities of degree n, without loss of generality we investigate E_p instead of E, p being sufficiently large, and replace the free algebra $K\{X\}^*$ by the free associative algebra $A^* = K\langle X\rangle^*$. In virtue of Theorem 3.1.5, $B_m(\text{var } E_p)$ (and hence $B_m(\text{var } E)$) is a submodule of $\sum N_m(\lambda_1, \dots, \lambda_m)$. Let $\lambda = (\lambda_1, \dots, \lambda_m)$ with $\lambda_1 > 1$. Then the standard generator $f_{\lambda}(x_1, \dots, x_m)$ is of degree ≥ 2 in x_1 , hence it vanishes on E and therefore $B_m(\text{var } E) \subset \sum N_m(1^n)$. For n even, the standard polynomial $S_n(x_1, \dots, x_n) \in A_m^*$ is in the space BA_m of proper elements and $S_n(e_1, \dots, e_n) \neq 0$. For n odd, the only submodule $N_m(1^n)$ of A_m^* is generated by $S_n(x_1, \dots, x_n)$ which does not belong to BA_m . Hence $B_m(\text{var } E) = \sum N_m(1^{2k})$.

The expression for $\Gamma_n(\text{var } E)$ is obtained immediately, because $\Gamma_n(\text{var } E)$ and $B_m^{(n)}(\text{var } E)$ have the same module structure.

(ii) The assertion follows immediately from (i) and Corollary 2.2.2.

3.3. The Lie algebra sl₂

Let sl_2 be the Lie algebra of all traceless 2×2 matrices with multiplication [u, v] = uv - vu. Over an algebraically closed field, sl_2 is isomorphic to the three-dimensional vector space K^3 with the usual vector product

$$(x_1, x_2, x_3) \times (y_1, y_2, y_3) = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The Killing form of K^3 is proportional to the scalar product $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$.

3.3.1. Theorem [10]. $F_m(\text{varsl}_2) = N_m(1) + \sum N_m(\lambda_1, \lambda_2, \lambda_3)$, where the summation runs over all $(\lambda_1, \lambda_2, \lambda_3)$ such that $\lambda_2 > 0$ and $\lambda_1 \not\equiv \lambda_2$ or $\lambda_2 \not\equiv \lambda_3 \pmod{2}$.

Proof. We identify the Lie algebras sl_2 and K^3 . The basis r_1 , r_2 , r_3 of K^3 will be good if it can be transformed to an orthogonal basis s_1 , s_2 , s_3 (see Definition 3.1.1 and the very beginning of Section 3.1). Additionally, if $\lambda_1 \equiv \lambda_2 \equiv \lambda_3 \equiv \varepsilon \pmod{2}$, $\varepsilon = 0$, 1, then $s_1^{\varepsilon} \times s_2^{\varepsilon} \times s_3^{\varepsilon} = 0$ and therefore $f_{\lambda}(s_1, s_2, s_3) = 0$. In virtue of Theorem 3.1.2, $F_m(\text{var } sl_2) \subset \sum N_m(\lambda_1, \lambda_2, \lambda_3)$, where $\lambda_1 \not\equiv \lambda_2$ or $\lambda_2 \not\equiv \lambda_3 \pmod{2}$. Since the module $N_m(\lambda_1)$, $\lambda_1 > 1$, does not appear in the decomposition of the free Lie algebra L_m the proof will be completed if we construct standard generators f_{λ} for all $N_m(\lambda_1, \lambda_2, \lambda_3)$ with $\lambda_1 \not\equiv \lambda_2$ or $\lambda_2 \not\equiv \lambda_3 \pmod{2}$ and $\lambda_2 > 0$, such that the f_{λ} are not polynomial identities for sl_2 . We refer to [10] for the explicit construction of f_{λ} .

Actually we have proved that the standard generator $f_{\lambda}(x_1, x_2, x_3)$, $\lambda = (\lambda_1, \lambda_2, \lambda_3)$, is a polynomial identity for sl₂ if and only if $f_{\lambda}(a_1, a_2, a_3) = 0$ for a basis a_1, a_2, a_3 of sl₂ such that the matrix of the Killing form is diagonal with respect to a_1, a_2, a_3 . For example, the following is such a basis:

(4)
$$a_1 = -(e_{11} - e_{22})\sqrt{-1/2}$$
, $a_2 = (e_{12} + e_{21})\sqrt{-1/2}$, $a_3 = (e_{12} - e_{21})/2$ with multiplication $a_1a_2 = -a_2a_1 = a_3/2$, $a_2a_3 = -a_3a_2 = a_1/2$, $a_3a_1 = -a_1a_3 = a_2/2$, $a_1^2 = a_2^2 = a_3^2 = -1/4$, hence $[a_1, a_2] = a_3$, $[a_2, a_3] = a_1$, $[a_3, a_1] = a_2$. Therefore we obtain the following consequence.

3.3.2. COROLLARY. The standard generator $f_{\lambda}(x_1, x_2, x_3)$, $\lambda = (\lambda_1, \lambda_2, \lambda_3)$, is a polynomial identity for sl₂ if and only if $f_{\lambda}(a_1, a_2, a_3) = 0$, where a_1, a_2, a_3 are defined in (4).

Razmyslov [52] has discovered a basis for the T-ideal of sl_2 (i.e. a system of generators of the T-ideal) consisting of three identities of degree 5. Later, Filippov [24] has reduced this basis to one identity. Comparing the decom-

positions

$$P_5(\text{var sl}_2) = M(4, 1) + M(3, 2) + M(2^2, 1)$$
 (see Theorem 3.3.1), and
 $PL_5 = M(4, 1) + M(3, 2) + M(3, 1^2) + M(2^2, 1) + M(2, 1^3)$

(the multilinear Lie elements of degree 5—this is a consequence of Theorem 2.1.3) we deduce that the Sym(5)-submodule of PL_5 of multilinear identities of degree 5 for sl_2 is isomorphic to $M(3, 1^2) + M(2, 1^3)$. This allows Razmyslov's result to be restated in the following way.

3.3.3. THEOREM [52]. The elements from the free Lie algebra L

$$f_{(3,1^2)} = \sum (\text{sign } \sigma) (x_{\sigma(1)} x_{\sigma(2)}) (x_{\sigma(3)} x_1) x_1,$$

$$f_{(2,1^3)} = \sum (\text{sign } \sigma) x_1 x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$$

form a basis for the polynomial identities of sl_2 . (In [52] these polynomials are replaced by the equivalent ones, $(x_1x_2)(x_1x_3)x_1$ and $\sum (sign \sigma)x_5x_{\sigma(1)}...x_{\sigma(4)}$.)

It turns out that almost all identities for sl_2 follow from $(x_1x_2)(x_1x_3)x_1$ and the Lie standard identity gives only the details in lower degrees.

3.3.4. THEOREM [15]. Let $U \triangleleft L$ be the T-ideal of all polynomial identities for sl_2 and let V be the T-ideal of L generated by $(x_1x_2)(x_1x_3)x_1$. Then all homogeneous elements of U of degree $\geqslant 7$ are contained in V and

$$(U \cap L_m)/(V \cap L_m) = N_m(2, 1^3) + N_m(2^2, 1^2).$$

The proof is based on a result by Nikolaev [45] which asserts that the polynomial identities in three variables for sl_2 follow from $(x_1x_2)(x_1x_3)x_1$, and on the decomposition of $L_m^{(6)}$ and $L_m^{(7)}$ into a sum of irreducible GL_m -modules.

3.4. The 2×2 matrix algebra

The centre of the 2×2 matrix algebra $M_2(K)$ consists of scalar matrices only and, as vector spaces, $M_2(K) = K \oplus sl_2$. Again the basis r_1 , r_2 , r_3 of sl_2 will be *good* if it can be transformed to a basis s_1 , s_2 , s_3 corresponding to a diagonal matrix of the Killing form of sl_2 . The proof of the following result makes use of Theorem 3.1.5 and is similar to the proof of Theorem 3.3.1.

3.4.1. THEOREM [10]. $B_m(\operatorname{var} M_2(K)) = K + \sum_{m} N_m(\lambda_1, \lambda_2, \lambda_3)$, where the summation is over all $\lambda = (\lambda_1, \lambda_2, \lambda_3) \neq (1^3)$ with $\lambda_2 > 0$.

As a consequence of Corollary 2.2.2 and Theorem 3.4.1 we obtain immediately

3.4.2. THEOREM [13, 26, 51]. Let $F_m(\text{var } M_2(K)) = K + \sum k(\lambda) N_m(\lambda)$, $\lambda = (\lambda_1, \ldots, \lambda_r)$. Then: (i) $k(\lambda) = 0$ if $\lambda_5 \neq 0$; (ii) $k(\lambda_1) = 1$; (iii) $k(\lambda_1, \lambda_2) = (\lambda_1 - \lambda_2 + 1)\lambda_2$ if $\lambda_2 > 0$; (iv) $k(\lambda_1, 1, 1, \lambda_4) = (\lambda_1 + 1)(2 - \lambda_4) - 1$; (v) $k(\lambda_1, \lambda_2, \lambda_3, \lambda_4) = (\lambda_1 - \lambda_2 + 1)(\lambda_2 - \lambda_3 + 1)(\lambda_3 - \lambda_4 + 1)$ in all other cases.

Razmyslov [52] has proved that var $M_2(K)$ can be defined by a system of 9 polynomial identities of degree ≤ 6 . In [9] this system has been reduced to 4 identities. Using the fact that Razmyslov's basis for var $M_2(K)$ consists of polynomial identities of degree ≤ 6 (but not the explicit form of the identities) and Theorem 3.4.1, computations in $BA_m^{(5)}$ and $BA_m^{(6)}$ have given a minimal generating set for $T(M_2(K))$.

3.4.3. THEOREM [11]. The polynomials $[[x_1, x_2]^2, x_1]$ and $S_4(x_1, x_2, x_3, x_4)$ from the free associative algebra form a basis for the identities of $M_2(K)$.

Extensively studied objects in ring theory are generic matrix rings and some related rings. Let $\Omega = K[\xi_{ij}^{(r)}|i,j=1,\ldots,k,\ r=1,2,\ldots]$ be the polynomial algebra in $\xi_{ij}^{(r)}$. The algebra of $k\times k$ generic matrices $R_k(Y)$ is the unitary subalgebra of $M_k(\Omega)$ generated by the matrices $Y = \{y_r = (\xi_{ij}^{(r)})|r=1,2,\ldots\}$. It is easy to see that $R_k(Y) \cong F^*(\text{var } M_k(K))$. The trace ring $\tilde{R}_k(Y)$ is generated by $R_k(Y)$ and all the traces from $R_k(Y)$. The description of $\tilde{R}_k(y_1,\ldots,y_m)$ as a GL_m -module is given in [26] and explicit computations with $\tilde{R}_2(Y)$ have been done in several papers ([26, 51] etc.). Here we combine the exposition of [51] with the approach of Section 3.1.

- **3.4.4.** Theorem [51]. Let $\tilde{R}_2(Y)$ be the 2×2 trace ring. Then:
- (i) The following K-algebra isomorphism holds:

$$\tilde{R}_2(Y) \cong K[z_1, z_2, \ldots]^* \otimes_K K\langle X \rangle^* / U,$$

where $U = \{f(x_1, \ldots, x_m) \in K \langle X \rangle^* \mid f(b_1, \ldots, b_m) = 0 \text{ for all } b_1, \ldots, b_m \in \operatorname{sl}_2 \subset M_2(K)\}.$

- (ii) $K\langle x_1,\ldots,x_m\rangle^*/(K\langle x_1,\ldots,x_m\rangle^*\cap U)=\sum N_m(\lambda_1,\lambda_2,\lambda_3)$, where the summation is over all partitions $\lambda=(\lambda_1,\lambda_2,\lambda_3)$.
- (iii) As a GL_m -module, the centre of $\tilde{R}_2(y_1, \ldots, y_m)$ is isomorphic to $K[z_1, \ldots, z_m]^* \otimes_K \sum N_m (2\mu_1 + \lambda_3, 2\mu_2 + \lambda_3, \lambda_3)$.

Sketch of proof. (i) The Cayley-Hamilton theorem yields that for a 2×2 matrix u,

$$u^2 - (\operatorname{tr} u)u + (\operatorname{tr}^2 u - \operatorname{tr} u^2)/2 = 0$$
,

hence $\operatorname{tr} u^2 = 2u^2 - 2(\operatorname{tr} u)u + \operatorname{tr}^2 u$. Since $\operatorname{tr} uv = \operatorname{tr} vu$, the linearization of this equation gives

$$\operatorname{tr} uv = uv + vu - (\operatorname{tr} u)v - (\operatorname{tr} v)u + (\operatorname{tr} u)(\operatorname{tr} v).$$

Therefore, $\tilde{R}_2(Y)$ is generated by y_i and $\operatorname{tr} y_i$, $i = 1, 2, \ldots$ But $y_i = \operatorname{tr} y_i/2 + y_i^0$, where y_i^0 is a matrix with zero trace, i.e.

$$\begin{split} \widetilde{R}_2(Y) &= K \langle y_i^0, \, \operatorname{tr} y_i | \, i = 1, \, 2, \, \ldots \rangle^{\#} \\ &\cong K[\operatorname{tr} y_i | \, i = 1, \, 2, \, \ldots]^{\#} \otimes_K K \langle y_i^0 | \, i = 1, \, 2, \, \ldots \rangle^{\#}. \end{split}$$

Since the traces of y_i are algebraically independent, $K[\operatorname{tr} y_i | i = 1, 2, ...]^* \cong K[z_1, z_2, ...]^*$. On the other hand, it is easy to prove that $K\langle y_i^0 | i = 1, 2, ...\rangle^* \cong K\langle X\rangle^*/U$, where U is the set of all weak polynomial identities of the pair $(M_2(K), \operatorname{sl}_2)$ (see [52] for details), i.e.

$$U = \{ f(x_1, \ldots, x_m) \in K \langle X \rangle^* \mid f(b_1, \ldots, b_m) = 0 \text{ for all } b_i \in sl_2 \subset M_2(K) \}.$$

(ii) Repeating verbatim the arguments of the proof of Theorem 3.3.1 and Corollary 3.3.2 we see that the standard generator $f_{\lambda}(x_1, x_2, x_3)$ of $A_m/(A_m \cap U)$ is a weak identity for the pair $(M_2(K), sl_2)$ if and only if $f_{\lambda}(a_1, a_2, a_3) = 0$, a_1, a_2, a_3 being defined in (4). It follows that $A_m/(A_m \cap U) \subset \sum N_m(\lambda_1, \lambda_2, \lambda_3)$. Since

$$g_{\lambda}(x_1, x_2, x_3) = S_3^{\lambda_3}(x_1, x_2, x_3) S_2^{\lambda_2 - \lambda_3}(x_1, x_2) x_1^{\lambda_1 - \lambda_2}$$

is a standard generator for $N_m(\lambda_1, \lambda_2, \lambda_3)$ and $g_{\lambda}(a_1, a_2, a_3) \neq 0$, all $N_m(\lambda_1, \lambda_2, \lambda_3)$ do enter the decomposition of $K(y_1^0, \ldots, y_m^0)^{\#}$ and this gives the desired result.

(iii) The proof makes use of the fact that, in the notation of (ii), $g_{\lambda}(a_1, a_2, a_3)$ is a scalar matrix if and only if $\lambda_1 - \lambda_2$ and $\lambda_2 - \lambda_3$ are even integers.

3.5. The Jordan algebra of a symmetric bilinear form

Let V_p be a vector space of dimension p with a nondegenerate symmetric bilinear form \langle , \rangle . Then $G_p = K + V_p$ has a structure of a Jordan algebra with multiplication

$$(\alpha+v)(\beta+w)=(\alpha\beta+\langle v,w\rangle)+(\alpha w+\beta v), \quad \alpha,\beta\in K,\ v,w\in V_p.$$

For p > 1, the G_p form a family of simple Jordan algebras. We call the basis r_1, \ldots, r_p of V_p good if it can be transformed to an orthogonal basis of V_p . For every orthogonal basis s_1, \ldots, s_p

$$(s_{j_1}\ldots)(\ldots s_{j_n})=\varepsilon s_1^{\delta_1}\ldots s_p^{\delta_p},$$

 $\varepsilon \in K$, $\delta_i = 0$, 1 and δ_i has the same parity as $\deg_{s_i}(s_{j_1}...)(...s_{j_n})$. Since the good bases are dense in V_p^p , Theorem 3.1.5 allows us to establish the following result.

3.5.1. THEOREM [16]. (i) $B_m(\text{var }G_p) = K + \sum N_m(\lambda_1, \ldots, \lambda_p)$, where the summation runs over all partitions $(\lambda_1, \ldots, \lambda_p)$ such that $\lambda_2 > 0$ and at most one of the integers λ_i is odd.

(ii)
$$B_m(\operatorname{var} G_\infty) = \left[\left(\sum_{n\geq 0} N_m(2)^{\underset{\otimes}{\otimes} n}\right) \otimes_K (K + N_m(1))\right] / \sum_{n\geq 1} N_m(n).$$

(Compare this result with (2)!)

4. Codimensions and Hilbert series

4.1. Reductions

Let N'_m and N''_m be GL_m -submodules of F_m with $N'_m \subset F_m^{(p)}$, $N''_m \subset F_m^{(q)}$, $N'_m \otimes_K N''_m \subset F_m^{(p+q)}$. Assuming $m \geqslant p+q$, define $M' = P_p \cap N'_m$, $M''_m = P_q \cap N''_m$, $M = P_{p+q} \cap N'_m \otimes_K N''_m$. Then the formulas

(5)
$$H(N'_m \otimes_K N''_m, t_1, \ldots, t_m) = H(N'_m, t_1, \ldots, t_m)H(N''_m, t_1, \ldots, t_m),$$

(6)
$$\dim M = \dim ((M' \otimes_K M'') \uparrow \operatorname{Sym}(p+q)) = \dim M' \cdot \dim M''(p+q)$$

simplify the computing of the Hilbert series of $F_m(U)$ and the codimensions of U. Theorem 2.2.1 (iii) reduces the computing of the Hilbert series of $F_m(U)$ to that of $B_m(U)$. A similar result holds for the codimensions.

4.1.1. THEOREM [13, 16, 17]. Let U be a variety of unitary algebras and let $\gamma_n(U) = \dim \Gamma_n(U)$, $n = 0, 2, 3, \ldots$, be the sequence of the proper codimensions of U. Then $c_n(U)$, $\gamma_n(U)$; $c(U, t) = \sum c_n(U)t^n$, $\gamma(U, t) = \sum \gamma_n(U)t^n$; $\tilde{c}(U, t) = \sum c_n(U)t^n/n!$, $\tilde{\gamma}(U, t) = \sum \gamma_n(U)t^n/n!$ are related by the following equalities:

- (i) $c_n(U) = \sum_{s=0}^{n} {n \choose s} \gamma_s(U);$
- (ii) $c(U, t) = \gamma(U, t/(1-t))/(1-t);$
- (iii) $\tilde{c}(\boldsymbol{U}, t) = e^{t} \tilde{\gamma}(\boldsymbol{U}, t)$.

4.2. Grassmann, matrix and related algebras

The codimension of the Grassmann algebra have been computed in [37]. Here we give an alternative proof.

- **4.2.1.** THEOREM [37]. (i) $c_n(E) = 2^{n-1}, n \ge 1$;
- (ii) c(var E, t) = 1/2 + 1/(2(1-2t));
- (iii) $\tilde{c}(\text{var } E, t) = 1/2 + e^{2t}/2$.

Proof. In virtue of Theorem 3.2.1, $\Gamma_n(\text{var }E) = M(1^n)$ for n even and $\Gamma_n(\text{var }E) = 0$ for n odd. Since dim $M(1^n) = 1$, we obtain $\gamma(\text{var }E, t) = 1 + t^2 + t^4 + \ldots = 1/(1 - t^2)$ and $\tilde{\gamma}(\text{var }E, t) = (e^t + e^{-t})/2$ and the result follows immediately from Theorem 4.1.1.

The computing of the codimensions of the $k \times k$ matrices seems to be a very difficult problem. The asymptotic behaviour of $c_n(M_k(K))$ has been established in a series of papers by Regev (see [25, 56] for references). Up till now only for 2×2 matrices has an explicit formula been obtained.

- **4.2.2.** THEOREM [51]. (i) $c(\operatorname{var} M_2(K), t) = (1 2t (1 4t)^{1/2})/(2t^2) t^3/(1 t)^4 + 1/(1 t) 1/(1 2t);$
 - (ii) $c_n(M_2(K)) = {2n+2 \choose n+1}/(n+2) {n \choose 3} + 1 2^n;$
 - (iii) [56] $c_n(M_2(K))$ equals asymptotically $4^{n+1}/(n(\pi n)^{1/2})$.

Proof. We follow the exposition of [19].

(i) In virtue of Theorem 3.4.1 it suffices to obtain an explicit formula for $g(t) = \sum \dim M(\lambda_1, \lambda_2, \lambda_3) t^{\lambda_1 + \lambda_2 + \lambda_3}$. By the Littlewood-Richardson rule,

$$\sum N_m(p, p) \otimes_K \sum N_m(q) \cong \sum N_m(\lambda_1, \lambda_2, \lambda_3)$$

and hence, applying (6) as in Theorem 4.1.1 (ii), g(t) = h(t/(1-t))/(1-t), where $h(t) = \sum \dim M(p, p) t^{2p}$. Applying the hook formula for dim M(p, p) we get dim $M(p, p) = (2p)!/(p!(p+1)!) = \binom{2p}{p}/(p+1)$ and some calculations show that $h(t) = (1-(1-4t^2)^{1/2})/(2t^2)$, $g(t) = (1-t-(1-2t-3t^2)^{1/2})/(2t^2)$. Finally, we obtain the expression for $c(\operatorname{var} M_2(K), t)$. The assertions (ii) and (iii) are consequences of (i).

Similar considerations allow one to compute the Hilbert series of $F_m(\text{var } M_2(K))$. For m=2 this has been done in [29] (see also [13]). The general case has been handled in [26] (see also [13, 39]). Here we prove the case m=2 only.

4.2.3. THEOREM.

$$H(\text{var } M_2(K), t_1, t_2) = (1-t_1)^{-1}(1-t_2)^{-1}(1+t_1t_2(1-t_1t_2)^{-1}(1-t_1)^{-1}(1-t_2)^{-1}).$$

Proof. We make use of Theorem 3.4.1, the Littlewood-Richardson rule and (5):

$$\begin{split} H\big(B_2\big(\text{var}\,M_2(K)\big),\,t_1,\,t_2\big) &= H\big(\sum N_2(\lambda_1,\,\lambda_2) - \sum_{n\geq 1} N_2(n),\,t_1,\,t_2\big) \\ &= H\big(\sum N_2(p,\,p) \otimes_K \sum N_2(q) + K - K[x_1,\,x_2]^*,\,t_1,\,t_2\big) \\ &= \big(H\big(\sum N_2(p,\,p),\,t_1,\,t_2\big) - 1\big)H\big(K[x_1,\,x_2]^*,\,t_1,\,t_2\big) + 1 \\ &= \big(\sum (t_1t_2)^p - 1\big)(1 - t_1)^{-1}(1 - t_2)^{-1} + 1 \\ &= 1 + t_1t_2(1 - t_1t_2)^{-1}(1 - t_1)^{-1}(1 - t_2)^{-1} \end{split}$$

and Theorem 2.2.1 (iii) gives the desired result.

In the same manner one can express the Hilbert series $H(\text{var sl}_2, t_1, t_2)$ [3, 13].

Developing a complicated technique, including combinatorial methods and analysis (e.g. evaluation of multiple integrals) Regev ([55, 56] and the references there) has established the asymptotic behaviour of the codimensions of the $k \wedge k$ matrices and of some related algebras. In particular, $c_n(M_k(K))$ equals asymptotically

$$(2\pi)^{(1-k)/2}2^{(1-k^2)/2}1!\dots(k-1)!k^{(k^2+4)/2}n^{(1-k^2)/2}k^{2n+2}$$

(there are monsters not only in the theory of finite simple groups).

Many interesting results have been obtained on the module structure and the Hilbert series of the trace ring $\tilde{R}_k(Y)$ and its centre $\tilde{C}_k(Y)$. It turns out that

as a commutative algebra $\tilde{C}_k(Y)$ enjoys a series of interesting properties [28]. In particular,

4.2.4. THEOREM ([39] for k = 2, [28, 61]). $H(\tilde{C}_k(y_1, \ldots, y_m), t_1^{-1}, \ldots, t_m^{-1}) = (-1)^d(t_1 \ldots t_m)^{k^2} H(\tilde{C}_k(y_1, \ldots, y_m), t_1, \ldots, t_m)$, where d is the Krull dimension of $\tilde{C}_k(y_1, \ldots, y_m)$. A similar functional equation holds for $\tilde{R}_k(y_1, \ldots, y_m)$.

Formanek's proof is based on the investigations of the invariants of $k \times k$ matrices [26]; Teranishi's approach is completely different and applies the Cauchy integral formula to the Molien-Weyl expression for the Hilbert series as a multiple integral. As a consequence Teranishi has evaluated $H(\tilde{C}_k(y_1, y_2), t_1, y_2)$ for k = 3, 4 [61, 62].

Kemer [34] has developed the structure theory of the *T*-ideals in the free associative algebra. An important role in his approach is played by the matrix algebras with entries from the Grassmann algebra. The simplest example is the

subalgebra
$$M_{11} = \begin{bmatrix} E^0 & E^1 \\ E^1 & E^0 \end{bmatrix}$$
 of $M_2(E)$ consisting of all 2×2 matrices (a_{ij}) ,

i, j = 1, 2, such that $a_{11}, a_{22} \in E^0$, $a_{12}, a_{21} \in E^1$ in the canonical grading $E = E^0 + E^1$ (see the proof of Theorem 3.2.1). The polynomial identities of M_{11} are the same as those of the tensor square $E \otimes_K E$. It turns out that in some sense the properties of $E \otimes_K E$ are similar to those of $M_2(K)$. The quantitative results on the polynomial identities of $E \otimes_K E$ obtained by Popov [47] have allowed him to find also a basis for the T-ideal $T(E \otimes_K E)$.

- **4.2.5.** THEOREM [47]. (i) $\Gamma_n(\text{var } E \otimes_K E) = \sum M(\lambda_1, 2^p, 1^q), n > 0$, where the summation is over all λ_1 , p, q such that $\lambda_1 + 2p + q = n$ and $(\lambda_1, 2^p, 1^q) \neq (n), (1^{2k+1})$.
- (ii) The polynomial identities $[[x_1, x_2], [x_3, x_4], x_5]$ and $[[x_1, x_2]^2, x_1]$ form a basis of the T-ideal $T(E \otimes_K E) \triangleleft K \langle X \rangle^{\#}$.

An approach similar to that of Theorem 4.2.2 gives the explicit formula for the codimensions of $E \otimes_K E$.

4.2.6. THEOREM [19]. (i)
$$c(\text{var } E \otimes_K E, t) = 1/2 + 1/(2(1-4t)^{1/2}) + t/(1-t)^2 + 1/(1-t) - 1/(1-2t);$$

- (ii) $c_n(E \otimes_K E) = {2n \choose n}/2 + n + 1 2^n, n > 0;$
- (iii) $c_n(E \otimes_K E)$ equals asymptotically $4^n/(2(\pi n)^{1/2})$.

Sketch of proof. It suffices to prove (i) only; then (ii) and (iii) follow immediately. The Littlewood-Richardson rule gives

$$\sum N_{m}(2^{2p}, 1^{2q}) \otimes_{K} \sum N_{m}(n) \cong \sum N_{m}(\lambda_{1}, 2^{p}, 1^{q})$$

$$\cong B_{m}(\text{var } E \otimes_{K} E) + \sum_{n>0} N_{m}(n) + \sum_{k>0} N_{m}(1^{2k+1}).$$

As in the proof of Theorem 4.2.2, explicit computations show that

$$g_1(t) = \sum \dim M(\lambda_1, 2^p, 1^q) t^{\lambda_1 + 2p + q} = h_1(t/(1-t))/(1-t),$$

where $h_1(t) = \sum \dim M(2^{2p}, 1^{2q})t^{4p+2q}$. The application of the hook formula gives $h_1(t) = (1 + (1 - 4t^2)^{1/2})/2$. Then the proof is completed as in Theorem 4.2.2.

There exist T-ideals of $K\langle X\rangle$ generated by important polynomial identities and which are very close to the T-ideals $T(M_2(K))$ and $T(E\otimes_K E)$. These identities are the standard identity $S_4(x_1, x_2, x_3, x_4)$, the central-by-metabelian identity $[[x_1, x_2], [x_3, x_4], x_5]$ and the Hall identity $[[x_1, x_2]^2, x_3]$ handled by Kemer [33], Popov [48] and Nikolaev [44], respectively. Since these three polynomials belong to ΓA_n , n=4, 5, without loss of generality we consider varieties of unitary algebras.

- **4.2.7.** THEOREM. Let S, C and H be the T-ideals of $K\langle X \rangle^{\#}$ generated by $S_4(x_1, x_2, x_3, x_4), [[x_1, x_2], [x_3, x_4], x_5]$ and $[[x_1, x_2]^2, x_3]$, respectively. Then:
 - (i) [33] $(BA_m \cap S)/(BA_m \cap T(M_2(K))) \cong N_m(3, 2) + N_m(3^2);$
 - (ii) [48] $(BA_m \cap C)/(BA_m \cap T(E \otimes_K E)) \cong N_m(3, 2) + N_m(3^2);$
- (iii) [44] $(BA_m \cap H)/(BA_m \cap T(M_2(K))) \cong N_m(3, 1^2) + 2N_m(2, 1^3) + N_m(3, 1^3) + 2N_m(2^2, 1^2) + N_m(2, 1^4) + N_m(2^2, 1^3) + \sum_{k>1} N_m(1^{2k}).$

By the way, in the proofs of (ii) and (iii) the authors have used the decomposition of the Sym(n)-modules ΓA_n for $n \le 8$. As an immediate consequence of Theorems 4.2.7 and 4.1.1 we obtain

4.2.8. Corollary [19]. (i)
$$c_n(S) = c_n(M_2(K)) + 5\binom{n}{5} + 5\binom{n}{6}$$
;

(ii) $c_n(C) = c_n(E \otimes_K E) + 5\binom{n}{5} + 5\binom{n}{6}$;

(iii)
$$c_n(H) = c_n(M_2(K)) + 2^{n-1} - 1 - \binom{n}{2} + 14\binom{n}{5} + 33\binom{n}{6} + 14\binom{n}{7}, n > 0.$$

The description of $B_m(\text{var }G_\infty)$ for the variety of Jordan algebras generated by G_∞ (see Theorem 3.5.1) gives an interesting formula for the codimensions of G_∞ and G_p . It seems very intriguing that there exists a connection between the asymptotic behaviour of $c_n(G_\infty)$ and the Hermite polynomials (see [16] for details).

- **4.2.9.** THEOREM [16]. (i) $c(\operatorname{var} G_{\infty}, t) = (1+t)\exp(t+t^2/2) + e^t e^{2t};$ $c_n(G_{\infty}) = g^{(n+1)}(1) + 1 2^n$, where $g(t) = \exp((t^2 1)/2);$
 - (ii) $c_n(G_{\infty}) = O((cn)^{n/2})$, where $c = \exp(\pi 1)$;
 - (iii) $\lim_{n\to\infty} (c_n(G_n))^{1/n} = p+1;$
 - (iv) [18] $c(\operatorname{var} G_2, t) = (t-1+(t+1)/(1-4t^2)^{1/2})/(2t)-t/(1-t)$.

4.3. Products of T-ideals

In this section we deal with unitary associative algebras only. For two algebras P and Q, let U = T(P) and V = T(Q) be the corresponding T-ideals of

 $A^* = K\langle X \rangle^*$. For a (P, Q)-bimodule M, it is easy to see that $R = \begin{bmatrix} P & M \\ O & Q \end{bmatrix}$ is a K-algebra and $T(R) \supset W = UV$. Under some additional conditions (see [40, 1, 64]), T(R) = W. For example [40] this holds if $P = F^*(U), Q = F^*(V), M = S/(US + SV)$, where $S = \sum_i A^* y_i A^*$ is a free (A^*, A^*) -bimodule of countable rank. Another example is the algebra $UT_p(K)$ of all $p \times p$ upper-triangular matrices when $T(UT_p(K)) = (T(K))^p = [A^*, A^*]^p$ [42].

We discuss the following problem. How to calculate the numerical invariants of the T-ideal W = UV if we know those of U and V? The following results give the connection between the Hilbert series of the relatively free algebras of U, V and W and their exponential codimension series.

4.3.1. THEOREM [27]. Let V, U be T-ideals of $A_m^* = K\langle x_1, \ldots, x_m \rangle^*$ and let W = UV. Then

(7)
$$H(W, t_1, ..., t_m) = H(U, t_1, ..., t_m) + H(V, t_1, ..., t_m) + (t_1 + ... + t_m - 1)H(U, t_1, ..., t_m)H(V, t_1, ..., t_m).$$

Proof (see e.g. [17]). Since $F_m^*(U) = A_m^*/U$ and

 $H(F_m^*(U), t_1, \ldots, t_m) + H(U, t_1, \ldots, t_m) = H(A_m^*, t_1, \ldots, t_m) = 1/(1 - (t_1 + \ldots + t_m)),$ the equality (7) is equivalent to

$$H(U, t_1, ..., t_m)H(V, t_1, ..., t_m) = H(UV, t_1, ..., t_m)H(A_m^{\#}, t_1, ..., t_m).$$

The free algebra $A_m^{\#}$ is a FIR-ring and every homogeneous ideal of $A_m^{\#}$ has a free system of homogeneous generators as a left (or right) $A_m^{\#}$ -module. Hence there exist multihomogeneous polynomials u_1, u_2, \ldots and v_1, v_2, \ldots such that $U = \sum u_i A_m^{\#}, V = \sum A_m^{\#} v_j$ and the sums are direct. Therefore

$$H(U, t_1, ..., t_m) = \sum_{i=1}^{|u_i|} H(A_m^*, t_1, ..., t_m),$$

where $t^{|u_i|} = t_1^{p_1} \dots t_m^{p_m}$, $p_s = \deg_{x_s} u_i$, and similarly for $H(V, t_1, \dots, t_m)$. Since $UV = \sum u_i (A_m^{\#})^2 v_j$ and $(A_m^{\#})^2 = A_m^{\#}$, it follows that $UV = \sum u_i A_m^{\#} v_j$, $H(UV, t_1, \dots, t_m) = \sum t^{|u_i|} t^{|v_j|} H(A_m^{\#}, t_1, \dots, t_m)$ and this gives the desired result.

4.3.2. Theorem [17]. The exponential codimension series of U, V and W = UV satisfy the equation

$$\tilde{c}(\boldsymbol{W},\,t) = \tilde{c}(\boldsymbol{U},\,t) + \tilde{c}(\boldsymbol{V},\,t) + (t-1)\tilde{c}(\boldsymbol{U},\,t)\tilde{c}(\boldsymbol{V},\,t).$$

Proof. Since $c_n(W)$ equals the coefficient of $t_1 \ldots t_n$ in $H(A_n^* \cap W, t_1, \ldots, t_n)$, Theorem 4.3.1 gives

$$c_{n}(W) = c_{n}(U) + c_{n}(V) + \sum_{k} (n!/(n! \, k! (n-k-1)!)) c_{k}(U) c_{n-k-1}(V)$$
$$- \sum_{k} (n!/(k! (n-k)!)) c_{k}(U) c_{n-k}(V).$$

Hence

$$\tilde{c}(\boldsymbol{W}, t) = \tilde{c}(\boldsymbol{U}, t) + \tilde{c}(\boldsymbol{V}, t) + (t - 1) \sum_{n} \sum_{k} c_{k}(\boldsymbol{U}) c_{n-k}(\boldsymbol{V}) t^{n} / (k! (n - k)!)$$

and this completes the proof because

$$\sum_{n}\sum_{k}c_{k}(\boldsymbol{U})c_{n-k}(\boldsymbol{V})t^{n}/(k!(n-k)!)=\tilde{c}(\boldsymbol{U},\,t)\tilde{c}(\boldsymbol{V},\,t).$$

The simplest application of Theorem 4.3.2 is when $W_p = U^p$ and U is the commutator ideal of A^* , i.e. U = var K. In this case the standard notation for W_p is $N_p A$, W_p is defined by the identity $[x_1, x_2] \dots [x_{2p-1}, x_{2p}]$ and this variety enjoys many interesting properties [38]. Since $c_n(U) = 1$ and $\tilde{c}(U, t) = e^t$, it is easy to establish the following consequence of Theorem 4.3.2.

4.3.3. COROLLARY [17].
$$\tilde{c}(N_p A, t) = e^t \sum_{k=0}^{p-1} (1 + (t-1)e^t)^k$$
.

Similarly, for the T-ideal U = T(E) Theorem 4.2.1 gives

4.3.4. COROLLARY [17]. For the variety $V_p = N_p \text{ var } E$ with a T-ideal $V_p = (T(E))^p$ generated by $[x_1, x_2, x_3] \dots [x_{3p-2}, x_{3p-1}, x_{3p}]$

$$c(V_p, t) = \sum_{k=0}^{p} f_{kp}(t) e^{2kt},$$

where the $f_{kp}(t)$ are polynomials in t and $f_{pp}(t) = (t-1)^{p-1}/2^p$.

Very often the asymptotic behaviour of the codimension sequence of a T-ideal is more important than the explicit formula. For example, for an associative PI-algebra R Regev [54] has established that $c_n(R) \leq d^n$ for a suitable d and this has allowed him to show that a tensor product of PI-algebras is PI again. Another application is due to Kemer [32] who has used the asymptotic behaviour of the cocharacter sequence to give the final form of a result of Razmyslov [53] on the nilpotency of the Jacobson radical of a finitely generated PI-algebra (see Theorem 1.5.1).

An estimate of the asymptotics of the codimension sequence $c_n(U)$ of a variety U is $\limsup (c_n(U))^{1/n}$. Clearly, $1/\limsup (c_n(U))^{1/n}$ equals the radius of convergence of the series c(U, t). It is unknown if $\lim_{n\to\infty} (c_n(U))^{1/n}$ exists for all U but in the few cases when it is explicitly calculated always $\lim_{n\to\infty} (c_n(U))^{1/n}$ does exist and is an integer. We suggest $\lim_{n\to\infty} (c_n(U))^{1/n}$ as a measure of the complexity of U.

4.3.5. DEFINITION [17]. We call the variety U extremal if $\lim_{n\to\infty} (c_n(U))^{1/n}$ exists and for any proper subvariety V of U,

$$\lim (c_n(U))^{1/n} > \lim \sup (c_n(V))^{1/n}.$$

Freely restated, this means that U is more complicated than its subvarieties. The most important examples of extremal varieties are the matrix varieties.

4.3.6. THEOREM [26, 55, 17]. The varieties of associative algebras var $M_p(K)$ are extremal: $\lim_{n\to\infty} (c_n(M_p(K)))^{1/n} = p^2$ and for every proper subvariety V, $\limsup (c_n(V))^{1/n} \leq p^2 - 1$.

It turns out that the varieties of Corollaries 4.3.3 and 4.3.4 are also extremal.

- **4.3.7.** THEOREM [17]. Let W_p and V_p be the varieties of associative (not necessarily unitary) algebras defined by the identities $[x_1, x_2] \dots [x_{2p-1}, x_{2p}]$ and $[x_1, x_2, x_3] \dots [x_{3p-2}, x_{3p-1}, x_{3p}]$, respectively. Then W_p and V_p are extremal:
 - (i) $\lim_{n\to\infty} (c_n(W_p))^{1/n} = p$, $\lim_{n\to\infty} (c_n(V_p))^{1/n} = 2p$;
 - (ii) For any proper subvarieties $U_1 \subset W_p$ and $U_2 \subset V_p$

$$\limsup (c_n(U_1))^{1/n} \leq p-1$$
, $\limsup (c_n(U_2))^{1/n} \leq 2p-1$.

The proof is based on a careful investigation of the cocharacter sequences of the subvarieties of W_p and V_p . In particular, the decomposition of $P_n(W_p)$ into a sum of irreducible $\operatorname{Sym}(n)$ -submodules is of the form $P_n(W_p) = \sum k(\lambda)M(\lambda)$, where $\lambda = (\lambda_1, \ldots, \lambda_s)$ and λ_{p+1} and s are bounded by constants depending on p only and λ_p is not bounded. On the other hand, for every proper subvariety U_1 of W_p , $P_n(U_1) = \sum k_1(\lambda)M(\lambda)$, where λ_p is bounded by a constant depending on U_1 . Then an estimate of the dimensions of the $\operatorname{Sym}(n)$ -modules allows one to obtain $\limsup (c_n(U_1))^{1/n} \leq p-1$. The bound for $U_2 \subset V_p$ is similar. We refer to [17] for details.

With some modifications the result for W_p holds for Lie algebras as well [17]. In this case W_p has to be replaced by the variety $A^3 \cap N_{p-1}A$ of all Lie algebras which are solvable of class 3 and satisfy the identity (x_1x_2) ... $(x_{2p-1}x_{2p})$.

Finally, we shall mention another important example of extremal varieties of Jordan algebras.

- **4.3.8.** Theorem [36]. Let G_p be the Jordan algebra of a nondegenerate symmetric bilinear form on a vector space of dimension p. Then the varieties var G_p and var G_{∞} are extremal:
 - (i) For a proper subvariety U of var G_p

$$\lim \sup (c_n(U))^{1/n} \leqslant p < \lim_{n \to \infty} (c_n(G_p))^{1/n} = p + 1.$$

When U is a variety of unitary algebras, $\lim_{n\to\infty} (c_n(U))^{1/n}$ exists and is an integer.

(ii) For a proper subvariety U of var G_{∞}

$$\limsup (c_n(U))^{1/n} < \infty = \lim_{n \to \infty} (c_n(G_\infty))^{1/n}.$$

References

- [1] A. Sh. Abakarov, On the identities of the algebra of triangular matrices, in: Modules and Algebraic Groups, Zap. Nauchn. Sem. LOMI 114 (1982), 7-27 (in Russian).
- [2] A. Z. Anan'in and A. R. Kemer, Varieties of associative algebras whose lattices of subvarieties are distributive, Sibirsk. Mat. Zh. 17 (1976), 723-730 (in Russian).
- [3] Yu. A. Bakhturin, 2-Variable identities of the Lie algebra sl(2, k), Trudy Sem. Petrovsk. 5 (1979), 205-208 (in Russian).
- [4] Identities in Lie Algebras, Nauka, Moscow 1985 (in Russian).
- [5] Yu. A. Bakhturin and V. S. Drensky, Varieties of Lie algebras, in: Algebraic Structures, Solia, to appear (in Russian).
- [6] A. Berele, Homogeneous polynomial identities, Israel J. Math. 42 (1982), 258-272.
- [7] A. Berele and A. Regev, Applications of hook Young diagrams to P. I. algebras, J. Algebra 82 (1983), 559-567.
- [8] A. Braun, The nilpotency of the radical in a finitely generated P.I. ring, ibid. 89 (1984), 375-396.
- [9] Bui Tuong Tri, On the basis of the identities of the matrix algebra of second order over a field of characteristic zero, Serdica 7 (1981), 187-194.
- [10] V. S. Drensky, Representations of the symmetric group and varieties of linear algebras, Mat. Sb. 115 (1981), 98-115 (in Russian).
- [11] Minimal basis for the identities of a matrix algebra of second order over a field of characteristic 0, Algebra i Logika 20 (1981), 282-290 (in Russian).
- [12] -, On the lattices of varieties of associative algebras, Serdica 8 (1982), 20-31 (in Russian).
- [13] -, Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra 91 (1984), 1-17.
- [14] -, T-ideals containing all matrix polynomial identities, Comm. Algebra 13 (1985), 2037-2072.
- [15] -, Sur les identités polynomiales de l'algèbre de Lie des matrices d'ordre deux, C. R. Acad. Bulgare Sci. 39 (10) (1986), 17-20.
- [16] -, Polynomial identities for the Jordan algebra of a symmetric bilinear form, J. Algebra 108 (1987), 66-87.
- [17] -, Extremal varieties of algebras, I, II, Serdica 13 (1987), 320-332; 14 (1988), 20-27 (in Russian).
- [18] -, On the identities of the three-dimensional simple Jordan algebra, Ann. Univ. Sofia Fac. Math. Méc. Livre 1 Math. 78 (1984), 57-71.
- [19] -, Explicit formulas for the codimensions of some T-ideals, Sibirsk. Mat. Zh. 29 (6) (1988), 30-36 (in Russian).
- [20] V. Drensky and A. Kasparian, Polynomial identities of eighth degree for 3 × 3 matrices, Ann. Univ. Solia Fac. Math. Méc. Livre 1 Math. 77 (1983), 175-195.
- [21] V. S. Drensky and A. P. Popov, *Prime varieties of associative algebras*, in: Math. and Education in Math., Publ. House of Bulg. Acad. Sci., Sofia 1987, 35-52.
- [22] -, -, Application of the representation theory of groups to PI-algebras, in: Algebraic Structures, Solia, to appear (in Russian).
- [23] V. S. Drensky and Ts. Rashkova, Varieties of metabelian Jordan algebras, Serdica 15 (1989), to appear.
- [24] V. T. Filippov, On the variety of Mal'tsev algebras, Algebra i Logika 20 (1981), 300-314 (in Russian).
- [25] E. Formanek, The polynomial identities of matrices, Contemp. Math. 13 (1982), 41-79.
- [26] -, Invariants and the ring of generic matrices, J. Algebra 89 (1984), 178-223.
- [27] -, Noncommutative invariant theory, Contemp. Math. 43 (1985), 87-119.
- [28] -, Functional equations for character series associated with n × n matrices, Trans. Amer. Math. Soc. 294 (1986), 647-663.
- [29] E. Formanek, P. Halpin and W.-C. W. Li, The Poincaré series of the ring of 2 × 2 generic matrices, J. Algebra 69 (1981), 105-112.

- [30] N. Jacobson, PI-Algebras: An Introduction, Lecture Notes in Math. 441, Springer, Berlin 1975.
- [31] G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison-Wesley, Reading, Mass., 1981.
- [32] A. R. Kemer, Capelli identities and nilpotency of the radical of a finitely generated PI-algebra, Dokl. Akad. Nauk SSSR 255 (1980), 793-797 (Russian).
- [33] -, The ideal of identities generated by the standard identity of fourth degree, in: Proc. XVII All-Union Algebraic Conf., Vol. 1, Minsk 1983, 89-90 (in Russian).
- [34] -, Varieties and Z_2 -graded algebras, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 1042–1059 (in Russian).
- [35] A. A. Klyachko, Lie elements in the tensor algebra, Sibirsk. Mat. Zh. 15 (1974), 1296-1304 (in Russian).
- [36] P. Koshlukov, Polynomial identities for a family of simple Jordan algebras, Comm. Algebra 16 (1988), 1325-1371.
- [37] D. Krakowsky and A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973), 429-438.
- [38] V. N. Latyshev, Complexity of nonmatrix varieties of associative algebras, I, II, Algebra i Logika 16 (1977), 149-183, 184-199 (in Russian).
- [39] L. Le Bruyn, The Poincaré series of Π_{m.2}, in: Ring Theory, Proc. Antwerp 1985, Lecture Notes in Math. 1197, Springer, Berlin 1986, 90-108.
- [40] J. Lewin, A matrix representation for free associative algebras, I, II, Trans. Amer. Math. Soc. 188 (1974), 293-308, 309-317.
- [41] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press (Clarendon), Oxford 1979.
- [42] Yu. N. Mal'tsev, A basis for identities of the algebra of upper-triangular matrices, Algebra i Logika 10 (1971), 393-400 (in Russian).
- [43] S. P. Mishchenko, Varieties of hypercentral-by-metabelian Lie algebras over a field of characteristic zero, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1983, No. 5, 33-37 (in Russian).
- [44] R. S. Nikolaev, The structure of the T-ideal generated by the Hall identity in three variables, I, II, Serdica 13 (1987), 258-266, 361-365 (in Russian).
- [45] -, Identities in three variables in the Lie algebra sl(2, K) over a field of characteristic zero, ibid. 14 (1988), 28-33 (in Russian).
- [46] G. M. Piacentini Cattaneo, Nonassociative degree five identities not implied by commutativity: a computer approach, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci. 357, Springer, Berlin 1989, 336-340.
- [47] A. P. Popov, Identities of the tensor square of the Grassmann algebra, Algebra i Logika 21 (1982), 442-471 (in Russian).
- [48] -, On central metabelian variety of algebras, Comm. Algebra 15 (1987), 1319-1347.
- [49] -, Module structure of space of proper polynomials of degree seven, C. R. Acad. Bulgare Sci. 38 (1985), 295-298.
- [50] C. Procesi, The invariant theory of n×n matrices, Adv. in Math. 19 (1976), 306-381.
- [51] -, Computing with 2×2 matrices, J. Algebra 87 (1984), 342-359.
- [52] Yu. P. Razmyslov, Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0, Algebra i Logika 12 (1973), 83-113 (in Russian).
- [53] -, The Jacobson radical in PI-algebras, ibid. 13 (1974), 337-360 (in Russian).
- [54] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152.
- [55] -, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), 115-136.
- [56] -, On the codimension of matrix algebras, in: Algebra Some Current Trends, Lecture Notes in Math. 1352, Springer, Berlin 1988, 162-172.
- [57] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, 1980.

V. Drensky

- [58] A. I. Shirshov, Subalgebras of free commutative and anticommutative algebras, Mat. Sb. 34 (1954), 81–88.
- [59] P. N. Siderov, Basis of identities of the algebra of triangular matrices over an arbitrary field, PLISKA Stud. Math. Bulgar. 2 (1981), 143-152 (in Russian).
- [60] W. Specht, Gesetze in Ringen, I, Math. Z. 52 (1950), 557-589.
- [61] Y. Teranishi, The ring of invariants of matrices, Nagoya Math. J. 104 (1986), 149-161.
- [62] -, Linear diophantine equations and invariant theory of matrices, Adv. Stud. Pure Math. 11 (1987), 259-275.
- [63] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Trans. Amer. Math. Soc. 64 (1942), 371-388.
- [64] S. M. Vovsi, Triangular Products of Group Representations and Their Applications, Progr. Math. 17, Birkhäuser, Boston 1981.
- [65] H. Weyl, The Classical Groups, Their Invariants and Representations, Princeton Univ. Press, Princeton, N. J., 1946.