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A typical application of usual Morse theory consists in the proof of the
classical Lefschetz theorem on hyperplane sections, cf. [A—F], [Mi]. If one
tries to generalize this theorem to the case of singular varieties one is led to
consider Morse theory on singular spaces. A general theory ol this form is
the “stratified Morse theory” which has been developed by M. Goresky and
R. MacPherson [G-M 1], [G-M 2]. In special cases it is possible to use a
simpler technique, such as Morse theory on manifolds with boundary. On
the other hand, this kind of Morse theory can serve to illustrate stratified
Morse theory in a special case. This will be discussed in the first five sections.

The power of stratified Morse theory becomes clear in more complicated
cases. It is important then to get hold of the “normal Morse data” (see [G—
M 1], [G-M 2]). In the last two sections it will be shown that Grothendieck’s
concept of “local homotopical depth” [Gr] 1s very useful in order to get
information about the homotopy type of normal Morse data in certain cases
and to prove a general Lefschetz theorem. It i1s left to the reader to compare
this approach with the techmique in [Hal].

1. The theorems of Lefschetz and Zariski

Let us begin with the following version of the classical Lefschetz theorem on
hyperplane sections:

1.1. Let X be a closed algebraic subset of rhe complex projective
space P,, let H be a hyperplane of P,, Y=XnH, X—Y non-singular,
dim™ (X—Y)=n. Then the pair (X, Y) is (n—1)-connected.

Here
dm (X—Y):= mn dim, (X-Y).

xeX-Y
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This theorem can be proved in an elegant way by Morse theory, cf. [A-F],
[Mi], § 7.

As we will see, there is a relation to the Zariski theorem on the
fundamental group of (the complement of) a projective hypersurface. In a
slightly more general form it can be stated as follows:

1.2. Let Z be a hypersurface in P, and H be a generic hyperplane. Then
(P,-Z, H—2Z) is (m— 1)-connected (cf. [Z], [H-L 1]).

There 1s the following generalization of 1.2 in the direction of 1.1:

1.3. Let X and Z be closed algebraic subsets of P,,, let H be a generic
hyperplane in P,, Y =XnNnH, X—Z non-singular, dim~ (X —Z) = n. Then
(X=2. Y-Z) is (n—1)-connected.

It is essential to choose H generic, so 1.1 is not just a corollary of 1.3.
According to an idea of Deligne [D] one may modify the statement in order
to avoid the assumption that H is generic:

14. Let X and Z be closed algebraic subsets of P,, let H be a
hyperplane in P, and V a suitable neighbourhood of H in P,,, X —(H u Z)
non-singular, dim~ (X —(Hw Z))=n. Then the pair (X—Z,VnX—2Z) is
(n—1)-connected.

This theorem has been proved in [H-L 2], it 1s not difficult to see that
1.1 and 1.3 are consequences. There are more general theorems which were
conjectured by Deligne [D], cf. [H-L 2], [G-M 1], [G-M 2], but this type of
generalization will not be discussed here.

What happens if one weakens the assumption of non-singularity? One
possibility is to replace it by the condition that locally we have a (set-
theoretic) complete intersection. A particularly easy case 1s given when X —Y
is already a complete intersection. A Lefschetz theorem for this situation will
be proved in Section 3 using Morse theory on manifolds with boundary
which will be discussed before in Section 2. Another possibility is to replace
the non-singularity assumption more generally by an assumption about local
homotopy groups, cf. Sect. 7.

2. Morse theory on manifolds with boundary

Just as usual Morse theory gives information about the homotopy type of
differentiable manifolds without boundary one can build up an analogous
theory for manifolds with boundary. This has been remarked and explained
by several authors, see [T], [M-C], [J-R], {H-L1]}, [B], [Ha2]. Let us
briefly recall the results.

Let M be a paracompact C* manifold with boundary, ¢: M >R a C”
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function. Let us call ¢ an m-function (cf. [J-R]) if the following conditions
are satisfied:

(i) ¢ has no critical points in JM;

(i) the critical points of ¢ and ¢|JdM are non-degenerate.

The m-functions form an open and dense set within the space of all C*
functions with respect to the Whitney C2-topology.

We assume now that ¢ is an m-function and ¢~ !'(]— =, c]) is compact
for all ceR.

Then we have:

2.1 The manifold M has the homotopy type of a CW complex having a
cell of dimension i

(i) for every critical point of ¢ of index i,

(i) for every critical point x of @|CM of index i provided that the
gradient of ¢ at x (with respect to some Riemannian metric) points into M.

But we will also use another type of Morse theory, namely on manifolds
with boundary modulo the boundary; here we are interested in the homotopy
type of (M, JdM):

2.2. The manifold M has the homotopy type of a space which is obtained
Jrom ¢M by attaching cells, with a cell of dimension i

(i) for every critical point of ¢ of index i,

(i) for every critical point x of @|0M of index i—1 provided that the
gradient of ¢ at x points out of M (cf. [Ha2], § ).

A very simple example is given by M = {(x, y)eR*| 1 < x2+y?2 <4},
@(x, y) =y (cf. also [H-L 1], p. 334). Whereas ¢ has no critical points the
restriction of ¢ to dM has four critical points. In the following drawing let us
indicate for every critical point of ¢|dM the index i, the direction of the
gradient of ¢ and the type of cell which has to be attached eventually if we
want to study the homotopy type of M and (M, ¢M) in the sense of 2.1 and
2.2, respectively:

- 2 ~cell

- 1 —cell

0-ceil -

M {#.0M)
See [Ha 2], p. 123, for a more detailed discussion of a different example.

15 - Bamnach Center i. 30
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3. A Lefschetz theorem for local complete intersections

In this section the following kind of a Lefschetz theorem will be proved:

THeOREM 3.1. Let X be a closed algebraic subset of P,, let H be a
hyperplane of P,, Y =X nH, dim (X=Y)=n, and assume that X—Y is
locally a (set-theoretic) complete intersection (i€, any xe X —Y has an open
neighbourhood U in X —Y which can be embedded as a locally closed analvtic
subset of some C™ such that the image of U is — as a set — the locus of
m'—dim U holomorphic functions). Then the pair (X, Y) is (n--1)-connected.

The proof is based on Morse theory on manifolds with boundary.
A technical difficulty is the reduction of the global to the local situation. In
order to make the central point clear it is useful to prove the [ollowing
theorem where this reduction is not necessary:

THEOREM 3.2. Let X be a closed algebraic subset of P,, let H be a
hyperplane of P,, Y =X nH, and let f,, ..., fy be polvnomials such that

X-Y={zeC"=P,—H| fy(z)= ... =£,(2)=0).
Then the pair (X, Y) is (m—k—1)-connected.

Note that in the case m—k =dim(X—Y) we get a special case of
Theorem 3.1.

Proof of Theorem 3.2. We may exclude the trivial case X = P,,. Let us
identify P,—H with C™ in such a way that we have 0¢ X —-Y. Let ¢,: P,
—H—R be defined by ¢o(z) = —(z,?+ ... +1z.1%), © =@o] X-Y. Let
R » 0, then Y is a deformation retract of YU {ze X—Y| —¢(z) = R!. Let
W: P,—-H —R be defined by v(z) =i c)*+ ... +1fi ()% Let « >0 be
small enough such that the following conditions are satisfied:

i ¥(0>a; )

(i) a is a regular value of ¥ and of ¥|{zeP,—H| ¢o(z) = —R};

(i) {ze X—-Y| —¢(z) £R) is a deformation retract of {ze P,,—H|
~0o()) <R, y(2) <al; _

(iv) {zeX-—-Y| —¢(z) =R} is a delormation retract of {ze P,—H|
—@o(z) =R, ¥ (2) <aj.

Then M = (ze P,—H! y(z) <a} is a C* manifold with boundary. It is
sufficient to prove that the pair ((zeM| —@y{z) <R}, 1zeM| —¢,(z) =R))
is (m—k—1)-connected. Here we use Morse theory as in Section 2,
taking an m-function ¢, on M which is near enough to ¢,! M such that:

() @, coincides with @, in a neighbourhood of {ze M| —¢q(z) = R};

() the Levi form of @, is negative definite everywhere, just as that of
Po:

(i) @, has no critical points, just as ¢q| M.
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The only critical points to be considered are of the following form:
ze P,,— H with (z) = a, —@o(2) < R, (d@,), = A(dy), with 1 < 0; this means
that z is a critical point of @4} M where the gradient of @, at z points into

M. Let z be such a point. Now the Hessian H of ¢,|¢M at z has the
following form:

H(v) = 2L¢-O_M(v)+2ReQ(v)

where L, ,, is the Levi form of ¢o— Ay at z, Q a complex quadratic form
and ve " = T, M a tangent vector to dM at z; cf. [Ha 2], p. 132. Now L;_ is
negative deﬁmte, and

L) = ¥ )0,

s0 Lg,-ay IS negative definite on the subspace of C™ defined by
@dah),=...=Wdf),=0

which is of dimension m—k. This subspace is contained in the tangent

space {ve C"| Rer(z) (df).() =0} to oM at z. By a well-known

argument (cf. [Ml] § 7) the Hessian H has at least m—k negative
eigenvalues, so Theorem 3.2 is proved. O

Proof of Theorem 3.1. In contrast to the proof above where X — Y was
replaced by a closed aeighbourhood M globally we will do this only locally
now. We may again assume that X #-P, and identify P,— H with C™ in
such a way that 0¢ X —Y. Let us fix a complex analytic. stratification of X
which is Whitney regular [W] and for which X —Y is a union of strata. Let
R > 0, then {ze P,,— H| ||z|I*> = R} intersects all strata transversally and Y is
a deformation retract of YU {ze X — Y| |lzI> = R}. It is sufficient to prove
that the pair (X —Y, {ze X — Y| |lz||> > R)) is (n— !)-connected. We can work
now within P,—H = (™. Obviously we may suppose that X—Y 1s
connected. After enlarging m if necessary X — Y is in the neighbourhood of
any z with ||z} < R the locus of kK = m—n holomorphic functions.

Let @,: P,—H— R be defined by ¢y(z) = —(z,1*+ ... +|z,?),
=@o| X—Y. Now xe X —Y is called a critical point of ¢ if x is a critical
point of the restriction of ¢ to the stratum which contains x. We
approximate ¢, by a C* function ¢,: P,— H — R such that:

() @o has no critical point in X — Y, just as ¢g;

(i) the critical points of § = $o| X —Y in ZeX—Y| —e@(z) < R} are
isolated; .

(i) @ coincides with ¢ on {ze X—Y| —¢(2) = R};

(iv. —@@)<Rif —p(z) <R, zeX-Y;

(v) @, has further properties which will be specified later.
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Let X, ={zeX—-Y| @(z) <r}]. Using controlled vector fields in the
sense of Thom and Mather [Ma] we see that X, and X,, have the same

homotopy type if —R <r, <r, and [r,, r,] contains no critical value of .

Let x be a critical point of @ such that —$(x) < R, y = $(x). We may
choose @, in such a way that ¢~ '({y}) contains no other critical point of .
Let &: €™ — R be the distance function from x. Let U be a neighbourhood of
x in C™ such that there are holomorphic functions f}, ..., f, on U with

(X—YV)nU=1{zeU| filz2)= ... =/ (z2) =0}.
Let y: U — R be defined by
V) =@+ . AR

Then we can find a subanalytic stratification of U which satisfies Thom’s a,,-
condition; ¢f. [T1], [Hi], § 5. We will consider U always as a stratified
space in this sense (this is important for the notion of critical points). Now
we may assume that @, is real analytic in U and that ¢,| U has (with respect
to the new stratilication) no critical point z different from x (note that we
may shrink U il necessary). Let ¢ > 0 be so small that {-e C¥| ¢(z) < &) is
contained in U and that {ze C¥| ¢(z) = ¢} intersects all strata of U and of
zeU—|x}| @o(z) =7} (with respect to the induced stratification)
transversally. Now Ict 6 > 0 be so small that ¢ and @o|{zeU| &(2) = &}
have no cntical point except x with value in the interval [y—4d, y+4].
Because of the ay-condition we can choose a >0 so small that
@ol iz€U| &(z) =&, ¥ (z) = «} has no critical point with value in [y—9, v +9],
further conditions on a will be specified later on. Because of the choice
of 4 the space Xy_au'{ée X,+5! &(z) < e is a deformation retract of X, ;.
It is sufficient to show that {zeX—-Y| é(z) <&, @(z) <y+46} has the
homotopy type of a space obtained from {ze X--Y| &(2) <&, @(2) < y—4)
by attaching cells of dimension > n. If a > 0 is chosen small enough, the
space lze X—Y| &(z2)<e P(z)<y+0) is a deformation retract of
tzeU| E(2) <6 Polz) <7+, Y(z) <a), and the same is true if y+4 is
replaced by y—6. So we see that it is sufficient to show that {zeU| &(z) <&,
Po(2) < y+9d, Y(z) <a} has the homotopy type of a space obtained from
izeU| £(2) <&, @olz) < 7—06, ¥(2) < a) by attaching cells of dimension > n.

Now let us forget the stratification which we have chosen on U. The set
zelU] €(z)<e yY(z) <al is a manifold with corners and therefore has a
natural stratification: the strata are defined by £ <e¢ and Yy <a, £ <¢ and ¢
=a, & =¢ and Y <a, £ =& and Y = a respectively. The restriction of @q to
the first stratum obviously has no critical point. The restrictions of ¢, to the
third and fourth stratum have no critical points with values in [y—9, 7+ 8]
because of the choices of & and a. So 1t remains to consider the restriction to
the second stratum, i.e. to the boundary of the manifold {zeU!| y(2) < a,
£(z) <&l
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But now we can apply the same argument as in the proof of Theorem
3.2 in order to see that such critical points give rise to attaching cells of
dimension 2 n (cf. also [H-L 1] (3.2.6)).

4. Stratified Morse theory

In this section we will recall the fundamental theorem of [G-M 1], [G-M 2]
in the “absolute and proper” case and show the connection with Section 2.

Let M be a C* manifold, X a Whitney stratified subset, ¢p: M — R a
C™ function, a, beR, a <b, ¢ '([a, b]) » X compact. Because of Thom’s
first isotopy lemma (cf. [Mal, § 11) it is easy to see that {ze X| @(z) < a! is
homeomorphic to {ze X| ¢(z) < b} if ¢| X (i.e. the restriction of ¢ to every
stratum of X) has no critical values in [a, b]. Now let us consider the case
where ¢@| X has exactly one critical point x in ¢ '([a, b]) and y: =
p(x)€]a, b[; let S be the stratum of X which contains x. Furthermore
assume that (do),| T # 0if T is any linear subspace of T, M such that there
exists a stratum §' # § of X and a sequence (x,) in §' with x, > x and T, §
— T. Finally assume that ¢|S has at x a non-degenerate critical point of
index I

Let N’ be a submanifold of M transversal to S at x such that xe N’ and

dim,S+dim, N’ = dim, M.

Let d be the distance with respect to some Riemannian metric on N, 6 > 0
small, then N := {zeN'| d(z, x) <é}. Let ¢>0 be small enough, Ay
= 1zeN| y—e < @(z) < 7+¢}, By = zeN| ¢(z) =7—¢]. The pair (4y, By)
1s called normal Morse data at x. Let s =dim_S.

THeoREM 4.1 (cf. [G-M 1], p. 522, [G-M2]). The space ‘zeX| ¢(z)
< y+e} is homeomorphic to the space obtained from z€X| @(z) < y—e! by
attaching A along B, where

(A, B) = D" (D', 8D") x(Ay, By).

Now let us study the connection with Section 2.

Let M be a C* manifold with boundary and ¢: M — R an m-function.
We have a natural stratification of M by the strata M = M — oM and oM.
Let x be a critical point of @|M or ¢|éM, y = ¢(x); assume that there are
no other critical points with value y. Let £ > 0 be small enough and assume
that {ze M| y—¢ < @ (z) < y+¢} is compact. Let us look how the homotopy
type changes if we pass from {ze M| ¢(z) <y—¢) to {ze M| o(z) < y+¢).

If xe M we are essentially in the situation of classical Morse theory, and
the theorem above (with Ay = {x], By =) as well as Section 2 are
compatible with it.
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If xe M, Ay 1s homeomorphic to an interval but By depends on the
direction of the gradient of ¢ at x which may point

(i) out of N (By consists of one point then) or

(i) into N (By = Q).

So the homotopy type does not change in the first case and we have to
attach a cell of dimension i in the second case, i = index of the critical point
x of @|cM. This is compatible with Section 2. Let us sketch (4y, By) and
(A, B) in the case of a critical point of index 1 and make 4.1 plausible in this
case: the subset along which we attach is drawn as a heavy line:

Case (1)

W

[ 777777777
LA /
. BN

Case (1)

SN
o
v /LT
.
N

In the case of Morse theory on manifolds with boundary modulo the
boundary let us replace By by By = By U(N n dM). From Theorem 4.1 it is
plausible that {ze M| ¢(z) < y+&} U éM should be homeomorphic to the
space obtained from {zeM| ¢(z) < y—ec}u M by attaching 4 along B,
where

(A, B) = D" x(D', DY) x(Ay, By)

and i is the index of the critical point z of ¢|8M or @|M.
If xe M. the pair (A, B’) coincides with (A4, B).
- If x e M, the space By consists of two points in case (i) and one point in
case (ii). Let us sketch (Ay, By) and (A, B’) for i = 1 and show that the result
is as expected:
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Case (i)
A,
e //, f//‘ 7
s I o %,
heavy: B’
Case (ii)

LT
1 N A
5 vo— (AL

So the homotopy type changes as predicted in Section 2.

In order to derive 2.2 literally from the stratified Morse theory of
Goresky and MacPherson one uses that the homeomorphism in Theorem 4.1
can be chosen to be compatible with the stratification of X in a certain
sense; cf. [G-M 2]. Then one replaces M and dM at the same time by spaces
obtained by successive attachment according to Theorem 4.1 and looks how
the homotopy type changes at each step of attaching.

Much more different cases are possible if one looks at manifolds with
corners. We will see an application in the next section.

5. A Zariski-Lefschetz theorem

The results of the preceding section will be illustrated by the proof of the
following theorem which is a generalization of Theorem 3.2:

TueoreM 5.1. Let X and Z be closed algebraic subsets of P, let H be a
hyperplane in P,,, Y = X nH, let V be a suitable neighbourhood of H in P,,,
and let f,, ..., f be polynomials such that identifying X — H with C™ we have

X—(YuZ)= zeP,—(HuZ)| fi(2) = ... =fi(z2) = 0}.
Then the pair (X —Z, VX —Z) is (m—k—1)-connected.
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Proof. Let g,, ..., g, be polynomials such that
Z-H={zeC"| g,(2)= ... =g,(z) = 0},
and let ¢, x and Y be the real-valued functions on C™ defined by

1@ =z + . Hlzalh 0o(@) = = 3 g (@ (1+x(2),
i=1

Y@ =1L+ . +HA@1P

Let R be a non-negative rcal number and V = H U {ze C™| %(z) = R} (it is
not necessary to take R large). Let r > 0 be small enough, then (X NV
—Zyuilze X—V| —@o(z) = r! is a deformation retract of X -Z and r is a
regular value of ¢, and ¢,| V. Now it is sufficient to prove that the pair
(zeX—=V| —@o2)=r), e XN 3V| —@o(2) =1} is (m—k— 1)~connected.

Let @ >0 be small enough and M = {ze C™| x(z2) <R, Yy (z) S a}, M’
= 1zeC"| 7(z) =R, W(z)<al. Then (zeX-V| —gpo(z)=r' and
1ze X N V| —@ol(z) = r} are deformation retracts of {ze M| —@o(z) = r}
and {ze M'\ —@q(z) = r} respectively, and « is a regular value of the
functions ¥, Y| dV, | (ze C™| —@o(z) =r} and y|{ze cV| —@o(z) =r]. We
wiil approximate ¢, by a C* function @, which has properties to be precised
later on and use @, 1n order to apply Morse theory to the manifold with
corners M “modulo M™. We have to show that the pair (ze M| —@,(2)
2r), {zeM'| ~@y(z) =1)) is (m—k— 1)-connected.

We ask that the Levi form of $, is — as that of ¢, — negative definite
everywhere and that —py(z) >r if —@e(z) >r and —@o(z) <r if —@y(2)
< r. There is an obvious stratification of the manifold with corners M, we
ask that for any stratum S the critical points of @4|§ lie in S and are non-
degenerate.

In order to prove the theorem we must look at a critical point z of the
restriction of @, to some stratum such that —@,(z) > r.

If = lies in the interior of M, ie. if x(z) < R, ¥ (z) < «, we are essentially
in the case of classical Morse theory, so we have to attach a cell of
dimension = m (= m—k) since the Levi form of ¢, is negative definite.

If y(z) <R, ¥ (z) =2, the argument in the proof of Theorem 3.2 shows
that we have to attach a cell of index > m—k if the homotopy type is
affected at all.

If x(z) = R, ¥(z) <a, we are essentially in the case of Morse theory on
manifolds with boundary modulo the boundary, cf. Section 2. The argument
is the same as in [H-L 2], (I.2.6): We have a contribution to the homotopy
type only if grad ¢, points out of M, i.e. we have only to look at the case
where (d@,), = A(dy), with 4 > 0. But the Levi form of ¢,—Ax 1s then
negative definite since those of ¢, and -y are both negative definite. So we
have to attach a cell of dimension > m then.
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If y(z) =R, ¢ (2) = a, ie. if z lies on the corner, we have an equation of
the form

(déo)z = '1 (dx)z + u (d\l’)za

where A # 0, u # 0. Now we look at the normal Morse data at z (cf Sect. 4):
depending on the signs of A and p we have one of the following situations
(using suitable coordinates for N):

If the restriction of @, to the corner has index i one has to attach (A4, B')
along B’, where

(A, B) = D*™"'" 2 x(D', dD') x(Ay, By),

Ay is shaded above and By is drawn as a heavy line. Now By is a
deformation retract of Ay unless 4 > 0, u < 9, so let us consider this spectal
case. Then Ay has the homotopy type of a space obtained from By by
attaching a l-cell, so one has to attach an (i+1)-cell. As the Levi form of

N

@o—Ax— P is obviously negative definite on the subspace (v eC™] Z .0,
’ v=1

(df).(v) = ... =(df).(v) =0} of C" = T. C™ which has complex dimension

> m—k—1 and is contained in the tangent space to the corner at z, we have
I 2 m—k—1, so one has to attach a cell of dimension > m—k. (Note that the
same kind of calculation has been made in [H--L3].) This proves Theorem

5.1. O

6. Normal Morse data in the complex case

In this section we recall some aspects of the description of the normal Morse
data in the complex case (see [G-M 1], Ch. 2, [G-M2]) and study them
using the results of {Ha1]. An application will be given in the last section.

Let us consider the situation which we had in Section 4, but start with a
complex manifold M and a complex analytic subset X of M which is
Whitney stratified. In this case the strata and also N’ should be complex
analytic. If we fix x the normal Morse data at x do not depend on ¢, up to
homeomorphism; cf. [G-M 1], Ch. 2, {G-M2]. We may embed N’ after
shrinking into some affine space C% Let [ be a linear function on C? such
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that ker ! is a generic hyperplane and let F = ze N{ [{z) = ¢}, where ¢ >0 is
sufficiently small. Then:

THeoreMm 6.1 (cf. [G-M 1], p. 526, [G-M 2]). (Ay, By) has the same
homotopy type as (CF, F), where CF is the cone over F.

Therefore we get

COROLLARY 6.2. Let i be the index of the critical point x of ¢]|S.
If F is (j— 2)-connected the pair (A, B) is (j+i— 1)-connected.

Now F has just been studied in [Hal]. Let us use the concept of
“rectified homotopical depth” which was introduced by Grothendieck [Gr].
We will take a definition which — as he remarks — should be equivalent to
his.

DeriniTION 6.3. Let X be a complex space, n > —1.

(@) X is n-connected il every continuous map p: oD**' - X, —1
< k € n, admits a continuous extension over D**1!.

(b) X has rectified homotopical depth = n if for any locally closed
analytic subset Y of X there is a nowhere dense closed analytic subset Y, of
Y such that for any xeY-Y, there is a fundamental system of
neighbourhoods U of x in X such that U—-Y is (n—dim¢ Y- 2)-connected.

Let us take a complex analytic stratification of X with connected strata

which is Whitney regular, and let X; be the umon of all strata of dimension
<

LemMa 64. The following conditions are equivalent:

(a) X has rectified homotopical depth = n,

(b) For anyi>=0 and any xe X;— X, there is a fundamental system of
neighbourhoods U such that U — X; is (n—i— 2)-connected.

Proof. (a) = (b) It is clear that the desired property holds for any i
> 0 and for almost any xe X;— X;_,, therefore for any xe X;—X,_,.

(b) = (a) If we take a finer stratification than the given one which is
also Whitney regular, property (b) holds also for the finer stratification: for if
A is a locally closed complex submanifold of X; — X;_; of dimension j and U
is a suitable neighbourhood of xe 4 in X, the pair (U, U— A) has the same
homotopy type as (U, U—X;)x(D* % D*-2_10)), so is (n+i—2j—1)-
connected, in particular (n—j—1)connected. Now let Y be as in the
definition of “rectified homotopical depth”; after shrinking X we may assume
that Y is closed in X. Let us take a stratification of X which is finer than the
given one and for which Y is a union of (connected) strata. Let Y, be the
union of all strata of the new stratification which are nowhere dense subsets
of Y. Obviously the desired condition is fulfilled. O
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Remark 6.5. From Lemma 64 we see that our notion of rectified
homotopical depth coincides with the one in [H-L 2], (IL.1.5).

LEMMA 6.6. Let X be a closed analytic subset of a complex manifold M,
and let us fix a Whitney regular stratification of X. Let N be a complex
submanifold of M of codimension p which intersects all strata of X
transversally. If X has rectified homotopical depth = n the space X "N has
rectified homotopical depth = n—p.

Proof. This follows from ~Lemma 64 by taking the induced
stratification on X N N. O

Let us now go back to the situation considered at the beginning of this
section. Let s be the complex dimension of S at x.

Lemma 6.7. If X has rectified homotopical depth = n the space F is
(n—s—2)-connected. ‘

Proof. By Lemma 6.6 N has rectified homotopical depth = n—s, so N
is locally strongly (n—s—2)-connected in the language of [Hal]. Now it
follows from the corollary of Proposition 2 in [Hal] that F is (n—s—2)-
connected. M

In total we get

Tueorem 6.8. If X has rectified homotopical depth = n the pair (A, B)
is (n—s+i—1)-connected.

Note that the theorem can be applied, in particular, if X is locally a set-
theoretic complete intersection, dim~™ X >h, .since X has rectified
homotopical depth > n then.

7. A Lefschetz theorem under assumption about the local homotopical depth

As Theorem (I1.14) in [H-L2] shows the condition “nonsingular of
dimension n” can be replaced by the condition “rectified homotopical depth
= n” in connection with the Lefschetz theorem. Now the results of Section 6
lead to a direct proof of a theorem which is more special than Theorem
(II.1.4) in [H-L 2] but more general than Theorem 3.1 above:

Thueorem 7.1. Let X be a closed algebraic subset of P,, let H be a
hyperplane in P, and Y = X nH. If XY has rectified homotopical depth
>n the puir (X, Y) is (n—1)-connected.

Proof. Let us identify P,—H with C™ choose a Whitney regular
stratification of X and take a suitable Morse function ¢: X—Y — R which
approximates the function z+s —||z||%. If S is any stratum of X and zeS—Y
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a critical point of @|S of index i we have i > dimS, therefore by Theorem
6.8 the assertion follows. i

CoroLLarYy 7.2. Let X be a closed algebraic subset of P,, let L be a
linear subspace of P,, of codimension c and Y = X n L. If X —Y has rectified
homotopical depth = n the pair (X, Y) is (n—c)-connected.

Proof. By induction on dimX. Let us fix a Whitney-regular
stratification of X and choose a hyperplane H in P, such that L ¢ H and
H—L intersects all strata of X transversally. By Lemma 6.6 the space
(X—Y)nH has rectified homotopical depth > n—1, by the induction
hypothesis the pair (X " H, Y) is {(n—1)—(¢—1))connected. On the other
hand, (X, X n H) 1s (n—1)<connected by Theorem 7.1. So (X, Y) is (n—c)-
connected. O

Remark 7.3. (a) Corollary 7.2 can also be proved directly using a
suitable function on X —Y and Theorem 6.8.

(b) Theorem 7.1 is even true if X—Y 1is locally strongly (n—2)-
connected; cf. [Ha 1], Theorem 3. But this does not lead to a corresponding

corollary since the analogue of Lemma 6.6 is not true; cf. the example given
in [Hal], p. 554.
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