TOPICS IN ALGEBRA BANACH CENTER PUBLICATIONS, VOLUME 26, PART I PWN POLISH SCIENTIFIC PUBLISHERS WARSAW 1990

UNIVERSAL EXACT SEQUENCES FOR TORSION THEORIES

OTTO KERNER

Mathematisches Institut der Universität Düsseldorf Düsseldorf, F.R.G.

Dedicated to Professor H. Tachikawa on the occasion of his 60th birthday

Let A be a finite-dimensional algebra and $(\mathcal{F}, \mathcal{F})$ a torsion theory in A-mod. If $X \in \mathcal{F}$ is an indecomposable torsion module which is not Ext-projective, and $0 \to \tau X \to E \to X \to 0$ is the Auslander-Reiten sequence in A-mod with end X, then it was proved in [AS, Bü, H83] that the induced sequence $0 \to t(\tau X) \to t(E) \to X$ is the relative Auslander-Reiten sequence in \mathcal{F} , ending with X (t denotes the torsion radical). The short exact sequence $0 \to t(\tau X) \to \tau X \to Q \to 0$, with $Q \in \mathcal{F}$ the cokernel of the inclusion $t(\tau X) \to \tau X$, has been used successfully in [K, K88] for the description of components of wild tilted algebras. The aim of the first part of this note is to show that this exact sequence is universal: If Z is any module in \mathcal{F} and $0 \to t(\tau X) \to M \to Z \to 0$ is a short exact sequence in $\operatorname{Ext}^1(Z, t(\tau X))$, we can get this sequence by a pull-back construction from the above one. Moreover, for A hereditary Q is Ext-injective in \mathcal{F} .

In the second part we will apply this result to the study of wild hereditary algebras with three pairwise nonisomorphic simple modules. We will describe the nonpreprojective component with a projective vertex for a wild tilted algebra with three simple modules rather explicitly.

Preliminaries

By a k-algebra A we understand a finite-dimensional, basic, associative unitary k-algebra, k some commutative field. We write A-mod for the category of finitely generated left A-modules and "module" always means "finitely generated module".

This paper is in final form and no version of it will be submitted for publication elsewhere.

A tilting module $_AT$ defines a torsion theory $(\mathscr{F}(T), \mathscr{G}(T))$, where $\mathscr{F}(T) = \{_AX | \operatorname{Hom}_A(T, X) = 0\}$, $\mathscr{G}(T) = \{_AY | \operatorname{Ext}_A^1(T, X) = 0\}$, and a torsion theory $(\mathscr{Y}(T), \mathscr{X}(T))$ in B-mod, $B = \operatorname{End}(T)$, defined by $\mathscr{Y}(T) = \{_BN | \operatorname{Tor}_1^B(T, N) = 0\}$, $\mathscr{X}(T) = \{_BM | T \otimes M = 0\}$. Then by the theorem of Brenner and Butler the functor $F = \operatorname{Hom}_A(T, -)$ induces an equivalence between $\mathscr{G}(T)$ and $\mathscr{Y}(T)$, and $F' = \operatorname{Ext}_A^1(T, -)$ an equivalence between $\mathscr{F}(T)$ and $\mathscr{X}(T)$ (see [R84]).

For an algebra A we denote by $\Gamma(A)$ the Auslander-Reiten quiver of A. If A is hereditary and representation-infinite, $\Gamma(A)$ consists of three parts: the preprojective component \mathcal{P} , the preinjective component \mathcal{P} and the regular part \mathcal{R} . If the context is clear, we shall not distinguish between a component of $\Gamma(A)$, the module class defined by this component, and the full subcategory of A-mod defined by this module class.

The Auslander-Reiten quiver $\Gamma(A)$ of an algebra A is equipped with an additional structure, the Auslander-Reiten translation τ . If A is hereditary, then τ is functorial. If C is a factor algebra of A we have a full exact embedding $C\text{-mod} \to A\text{-mod}$. Thus for a C-module X we can consider the Auslander-Reiten translation in C-mod and in A-mod; if it is necessary to distinguish, we add a subscript to τ , for example τ_C , τ_A^{-1} .

The term wild algebra always means strictly wild in the sense of [R76]: A k-algebra A is called *strictly wild* if there exists a full exact embedding $k'\{X, Y\} \rightarrow A$ -mod, where k' is a finite commutative extension of k and $k'\{X, Y\}$ is the free k'-algebra in two generators X and Y.

1. The universal sequence

DEFINITION. Let X be an indecomposable module and $\mathscr C$ a class of modules in A-mod. A short exact sequence $0 \to X \to M \to Q \to 0$ with $Q \in \text{add} \mathscr C$ is called universal in $\text{Ext}(\mathscr C, X)$ if

- (i) Hom(Q, M) = rad(Q, M),
- (ii) for $D \in \text{add} \mathcal{C}$ the induced map δ : $\text{Hom}(D, Q) \to \text{Ext}^1(D, X)$ is surjective.

It is clear that for given X and $\mathscr C$ universal short exact sequences in $\operatorname{Ext}(\mathscr C,X)$ do not exist in general. But, if existing, they are unique up to isomorphism: Let $0 \to X \to M_1 \to Q_1 \to 0$ and $0 \to X \to M_2 \to Q_2 \to 0$ be universal in $\operatorname{Ext}(\mathscr C,X)$. By (ii) we get linear maps $r\colon Q_1 \to Q_2$ and $s\colon Q_2 \to Q_1$ such that the following diagram commutes:

$$0 \rightarrow X \rightarrow M_1 \rightarrow Q_1 \rightarrow 0$$

$$\parallel \qquad \downarrow \qquad r \downarrow$$

$$0 \rightarrow X \rightarrow M_2 \rightarrow Q_2 \rightarrow 0$$

$$\parallel \qquad \downarrow \qquad s \downarrow$$

$$0 \rightarrow X \rightarrow M_1 \rightarrow Q_1 \rightarrow 0$$

Let $t = sr \in \text{End}(Q_1)$. By Fitting's lemma we may suppose that $\ker t$ is a direct summand of Q_1 . Considering

$$0 \qquad 0$$

$$\downarrow \qquad \downarrow$$

$$\ker t = \ker t$$

$$\downarrow \qquad \downarrow$$

$$0 \to X \to M_1 \to Q_1 \to 0$$

$$\parallel \qquad \downarrow \qquad \downarrow \downarrow$$

$$0 \to X \to M_1 \to Q_1 \to 0$$

we conclude by condition (i) that the kernel of t is trivial. Doing the same with $rs \in \text{End}(Q_2)$ we see that the sequences are isomorphic.

Let $(\mathcal{F}, \mathcal{F})$ be a torsion theory in A-mod, \mathcal{F} denoting the class of torsion-free modules and \mathcal{F} the class of torsion modules. Let X be an indecomposable torsion module which is not Ext-projective and let $0 \to \tau X \to E \to X \to 0$ be the Auslander-Reiten sequence in A-mod ending with X. If t denotes the torsion radical, then, as mentioned above, the relative Auslander-Reiten sequence in \mathcal{F} with end X is $0 \to t(\tau X) \to t(E) \to X \to 0$.

THEOREM. Let A be a finite-dimensional algebra and $(\mathcal{F}, \mathcal{F})$ a torsion theory in A-mod.

(a) For an indecomposable torsion module X either X is Ext-projective, or the short exact sequence

$$0 \rightarrow t(\tau X) \rightarrow \tau X \rightarrow Q \rightarrow 0$$

is universal in $\operatorname{Ext}(\mathcal{F}, t(\tau X))$.

(b) If A is hereditary, then Q is Ext-injective in \mathcal{F} .

Proof. (a) X is Ext-projective if and only if τX is Ext-injective if and only if $t(\tau X) = 0$ (see [AS, H83]). So assume $t(\tau X)$ is not zero. As τX is indecomposable and not torsion-free, we have $\operatorname{Hom}(Q, \tau X) = \operatorname{rad}(Q, \tau X)$. For a torsion-free module Y we apply the covariant functor $\operatorname{Hom}(Y, -)$ to the exact sequence in (a) and get

$$\dots \to \operatorname{Hom}(Y, Q) \xrightarrow{\delta} \operatorname{Ext}^{1}(Y, t(\tau X)) \to \operatorname{Ext}^{1}(Y, \tau X) \to \dots$$

But by the Auslander-Reiten formula we have $D\operatorname{Ext}(Y, \tau X)$ $\simeq \operatorname{Hom}(X, Y) = 0$, since $\operatorname{Hom}(X, Y) = 0$ as X is torsion and Y is torsion-free. Thus δ is surjective.

(b) If X is Ext-projective, $Q = \tau X$ is Ext-injective. So assume $t(\tau X) \neq 0$. Q is torsion-free by construction. Let $Q = Q_1 \oplus Q_2$ with Q_1 injective and Q_2 without injective direct summands. Clearly Q_1 is Ext-injective. Let $p: Q \to Q_2$ be the canonical projection. Then the composed map $h: \tau X \to Q \to Q_2$ is surjective and, as τ^{-1} is a right-exact functor for A hereditary, also $\tau^{-}(h): X \to \tau^{-1}(Q_2)$ is

surjective. But X is a torsion module and so also τ^-Q_2 is torsion. By [H83] a torsion-free module Q is Ext-injective if and only if τ^-Q is torsion; therefore Q_2 is Ext-injective.

COROLLARY. Let A be hereditary and $T = \bigoplus_{i=1}^n T_i$ a tilting module. If X is an indecomposable module in $\mathcal{G}(T)$ not Ext-projective, then the short exact sequence $0 \to t(\tau X) \to \tau X \to Q \to 0$ is universal in $\text{Ext}(\mathcal{F}(T), t(\tau X))$ and Q is in add $\{\tau T_i | T_i \text{ not projective}\}$.

Remark. Let us mention that in the tilting situation the universal exact sequence in $\operatorname{Ext}(\mathcal{F}, t(\tau X))$ (or, dually in $\operatorname{Ext}(\tau^- X/t(\tau^- X), \mathcal{G}(T))$ if X is torsion-free and not Ext-injective), and thus also τX , can be constructed explicitly: Let $T = T_1 \oplus \ldots \oplus T_n$ with T_i indecomposable pairwise nonisomorphic and let \mathcal{Q} be the Gabriel quiver of the tilted algebra $B = \operatorname{End}(T)$. The r sources of \mathcal{Q} correspond to r direct summands of T, say T_1, \ldots, T_r . If d_i is the dimension of $\operatorname{Ext}(\tau T_i, t(\tau X))$ as a $D_i = \operatorname{End}(T_i)$ -module, we consider the universal exact sequence

(*)
$$0 \to t(\tau X) \to M \to \bigoplus_{i=1}^{r} (\tau T_i)^{d_i} \to 0,$$

which represents all exact sequences in $\operatorname{Ext}(\tau T_i, t(\tau X))$. Let now T_{r+1}, \ldots, T_s be the indecomposable summands of T which correspond to the vertices of \mathcal{Q} next to the sources. For T_m with $r+1 \leq m \leq s$ we apply the functor $\operatorname{Hom}(\tau T_m, -)$ to the exact sequence (*) and get

$$\dots \to \operatorname{Hom}(\tau T_m, \bigoplus (\tau T_i)^{d_i}) \xrightarrow{\delta_m} \operatorname{Ext}^1(\tau T_m, t(\tau X)) \to \dots$$

Let $d_m(r+1 \le m \le s)$ be the dimension of the cokernel of δ_m and consider the exact sequence $0 \to t(\tau X) \to N \to \bigoplus_{i=1}^s (\tau T_i)^{d_i} \to 0$ which represents all exact sequences in $\operatorname{Ext}(\tau T_i, t(\tau X))$ for $1 \le i \le s$. Continuing this process, we finally get the universal short exact sequence $0 \to t(\tau X) \to \tau X \to Q \to 0$.

In particular, if the tilting module T is of the form $T = Z \oplus M$ with Z indecomposable regular and M preprojective, then for all regular torsion modules X we have $\tau X/t(\tau X) = (\tau Z)^m$ for some nonnegative m.

Let A be an algebra, not necessarily hereditary, $_AT$ a tilting module, and Z an indecomposable torsion module.

If Z is injective, then trivially $0 \to Z = Z \to 0 \to 0$ is the universal exact sequence in $\operatorname{Ext}(\mathscr{F}(T), Z)$. If Z is not injective, by [HR] there exists a relative Auslander-Reiten sequence in $\mathscr{G}(T)$, $0 \to Z \to M \to N \to 0$. Then $0 \to Z \to T_A \to T_A$

PROPOSITION. Let A be an algebra and $_AT$ a tilting module. If X is in $\mathscr{G}(T)$, then there exists a universal exact sequence in $\operatorname{Ext}(\mathscr{F}(T), X)$.

2. Hereditary algebras with three simple modules

If A is a finite-dimensional wild hereditary connected algebra, all regular components of $\Gamma(A)$ are of type $\mathbb{Z}A_{\infty}$, by [R78]. If X and Y are indecomposable regular A-modules, there exist integers N_1 and N_2 such that $\operatorname{Hom}(X, \tau^s Y) \neq 0$ for all $s \geq N_1$ (see [B]) and $\operatorname{Hom}(X, \tau^{-s} Y) = 0$ for all $s \geq N_2$ (see [K]).

It was proved by [H84] that $\operatorname{Ext}(X,X) \neq 0$ for all indecomposable regular modules X with quasilength at least n-1, n the number of nonisomorphic simple A-modules. In particular, for n=3 all indecomposable regular modules without self-extensions are quasisimple. Take a regular brick X without self-extensions (such modules always exist, see for example [R88]) and consider the Auslander-Reiten sequences $0 \to \tau^2 X \xrightarrow{e_2} \tau Y \xrightarrow{p_2} \tau X \to 0$ and $0 \to \tau X \xrightarrow{e_1} Y \xrightarrow{p_1} X \to 0$. Then we have:

LEMMA 1. The map α : Hom $(X, \tau^2 X) \rightarrow$ Hom $(Y, \tau Y)$ defined by $\alpha(f) = p_1 f e_2$ is an isomorphism.

Proof. Clearly α is injective. Take $g \in \text{Hom}(Y, \tau Y)$; then $e_1 g p_2 = 0$ since X is a brick and e_1 is irreducible. So there exists $h: X \to \tau X$ with $g p_2 = p_1 h$. But, by $\text{Hom}(X, \tau X) \simeq D \operatorname{Ext}(X, X) = 0$ we have $g p_2 = 0$. Therefore $g = r e_2$ for some $r \in \text{Hom}(Y, \tau^2 X)$. But $e_1 r$ is zero, so we see that $g = r e_2 = p_1 f e_2$ for some $f \in \text{Hom}(X, \tau^2 X)$.

If A is wild connected hereditary and X is an indecomposable module without self-extensions, following [GL] we consider the right perpendicular category X^{\perp} of X. It is the full subcategory of A-mod defined by the objects $\{Y | \operatorname{Hom}(X, Y) = \operatorname{Ext}^1(X, Y) = 0\}$. By [GL], X^{\perp} is equivalent to C-mod where C is a hereditary algebra. If moreover X is regular, C additionally is wild and connected (see [S]). If T is a tilting module in A-mod, there always exists a decomposition $T = X \oplus T'$ with $T' \in X^{\perp}$.

Let us again consider the case that A has three, pairwise nonisomorphic, simple modules and $_AT$ is a (multiplicity-free) tilting module. We are interested in the torsion class $\mathscr{G}(T)$ (or dually in the torsion-free class $\mathscr{F}(T)$). By [K] we may suppose that T has no preinjective direct summands. If T is preprojective, the tilted algebra is concealed. So assume that T has at least one regular direct summand. As mentioned above, we then get a decomposition $T = X \oplus T'$, $T' = T_1 \oplus T_2$ with X regular, $T' \in X^{\perp}$, T_i regular or preprojective for i = 1, 2. Let us shortly summarize the known results we will use in the sequel:

- (A) T' is a sincere A-module with $Hom(T_i, X) \neq 0$ for i = 1, 2; in the category X^{\perp} the module T' is preprojective (see [U]).
- (B) $C = \operatorname{End}(T')$ is a wild hereditary algebra with two projective modules $F(T_1)$ and $F(T_2)$. The tilted algebra $B = \operatorname{End}(T)$ is a one-point extension of C by the indecomposable regular C-module M = F(R), where R is the middle term of the Auslander-Reiten sequence $0 \to \tau X \to R \to X \to 0$ (see [K88, S, U]).

- (C) All regular components in $\mathscr{Y}(T)$ are of type $\mathbb{Z}A_{\infty}$. If \mathscr{C} is a regular component in $\mathscr{Y}(T)$, there exists a quasisimple module $F(S) \in \mathscr{C}$ such that S is a quasisimple regular A-module with $F(^{>}S) = ^{>}(F(S))$. The symbol $^{>}S$ ($^{>}(F(S))$) denotes the full subquiver of $\Gamma(A)$ ($\Gamma(B)$) defined by the predecessors of S (F(S)) (see $\lceil K \rceil$).
- (D) If \mathcal{D} is a regular component in $\Gamma(C)$, there exists a quasisimple module Z in \mathcal{D} such that $\operatorname{Hom}(M, Y) = 0$ for all $Y \in Z^{<}$ (see [K]). As in (B) we denote by M = F(R) the radical of the projective B-module F(X). So $Z^{<}$ is a full successor-closed part of a component of $\Gamma(B)$ (see [R84, 2.5(6)]).

PROPOSITION 1. Let A be a connected wild hereditary algebra with three simple modules.

- (a) If X is a regular brick without self-extensions, then $\operatorname{Hom}(X, \tau^{-i}X) = 0$ for all i > 0.
- (b) If $T = X \oplus T_1 \oplus T_2$ is a tilting module with X regular and $T' = T_1 \oplus T_2 \in X^1$, then $(\tau^2 X)$ is in $\mathcal{G}(T)$, where $(\tau^2 X)$ are the predecessors of $\tau^2 X$ in $\Gamma(A)$.

Proof. (a) Suppose there exists i > 0 such that $\operatorname{Hom}(X, \tau^{-i}X) \neq 0$. Take $f \in \{g \in \operatorname{Hom}(X, \tau^{-i}X) | g \neq 0, i > 0\}$ such that the image W of $f: X \to \tau^{-n}X$ has minimal composition length. The map f cannot be injective; otherwise we would get a chain of injective maps $\dots \to \tau^s X \to \dots \to \tau^2 X \to \tau X \to X$.

If $\operatorname{Ext}^1(W, W) \neq 0$, there exists a nonzero map $g \in \operatorname{Hom}(W, \tau W)$. Notice that the inclusion $W \to \tau^{-n} X$ induces monomorphisms $i_r : \tau^r W \to \tau^{-n+r} X$ for all natural r, since the cokernel $\tau^{-n} X/W$ has no preprojective direct summand. If n = 1, then fg is an endomorphism of X which is not injective, but X is a brick. If n > 1, the map g has to be injective, otherwise $fgi_1 : X \to \tau^{1-n} X$ has smaller image than f. Now $fg(\tau g) \dots (\tau^{n-1} g)i_n$ is again a noninvertible endomorphism of X.

If $\operatorname{Ext}^1(W, W) = 0$ then W is a quasisimple brick and Lemma 1 with X = W together with the discussion preceding Lemma 1 yield $\operatorname{Hom}(W, \tau^2 W) \neq 0$. In the same way as in the previous case we then construct either a noninjective endomorphism of X or a nonzero map from X to τX .

(b) We consider the Auslander-Reiten sequences

(AR1)
$$0 \to \tau X \to R \to X \to 0$$
, (AR2) $0 \to \tau R \to \tau X \oplus R' \to R \to 0$.

By the cited result (B) we know R is torsion and moreover that R is regular in the category C-mod, with C = End(T'). Consider the universal exact sequence

$$0 \rightarrow t(\tau R) \rightarrow \tau R \rightarrow Q \rightarrow 0$$
.

We have $Q \in \operatorname{add}(\tau T)$ by the first section. If τT_i is a direct summand of Q, we get $\operatorname{Hom}_A(R, T_i) \neq 0$. Then also $0 \neq \operatorname{Hom}_B(F(R), F(T_i)) = \operatorname{Hom}_C(F(R), F(T_i))$, but $F(T_i)$ is projective in C-mod and F(R) is regular.

Therefore $Q = (\tau X)^s$ for some $s \ge 1$. But $\operatorname{Hom}(\tau R, \tau X)$ is one-dimensional, thus we have s = 1. From this it can be deduced immediately that $t(\tau R) = \tau^2 X \in \mathcal{G}(T)$; from (AR2) we then get the relative Auslander-Reiten sequence $0 \to \tau^2 X \to R' \to R \to 0$; in particular, R' is a torsion module too.

Assume by induction that $\tau^i X$ is a torsion module for some $i \ge 2$. Again we look at the universal exact sequence

$$0 \to t(\tau^{i+1}X) \to \tau^{i+1}X \to 0 \to 0.$$

Since $\operatorname{Hom}(\tau^{i+1}X, \tau X) = 0$ by (a), we have $Q \in \operatorname{add}(\tau T')$. For $Q \neq 0$ we get an epimorphism $\tau^{i+1}X \to (\tau T_1)^r \oplus (\tau T_2)^s$ for some r and s and thus an epimorphism $\tau^i X \to T_1^r \oplus T_2^s$. Therefore, by the result (B) we have $\tau^i X \in \operatorname{add}(T')$. But then Unger's result, as mentioned in (A), implies $\operatorname{Hom}(\tau^i X, X) \neq 0$, a contradiction to (a). Therefore Q = 0 and $t(\tau^{i+1}X) = \tau^{i+1}X \in \mathscr{G}(T)$. This finishes the proof of (b).

In the last few pages we will apply the results obtained to describe in detail the component of $\Gamma(B)$ which contains the projective module F(X). Again A is a hereditary wild connected algebra with three simple modules and $T = X \oplus T'$ is a tilting module with X regular and $T' \in X^{\perp}$.

We have to consider the Auslander-Reiten sequence $0 \to \tau X \to R \to X \to 0$. Since τX and X are orthogonal bricks, R also is a brick with $R \in X^{\perp} \simeq C$ -mod.

LEMMA 2. Let C be a wild hereditary algebra with two simple modules. If R is a regular brick, we have:

- (i) $\text{Hom}(R, \tau^{-i}R) = 0$ for all i > 0,
- (ii) $\operatorname{Hom}(R, \tau^i R) \neq 0$ for all i > 1.

Proof. (i) is done in the same way as (a) of Proposition 1.

(ii) By $\operatorname{Ext}^1(R,R) \neq 0$ we get via Auslander-Reiten formulas $\operatorname{Hom}(R,\tau R) \neq 0$. Let $i \geq 1$ with $\operatorname{Hom}(R,\tau^i R) \neq 0$ and consider $0 \neq V \neq (R) f$ for $f \in \operatorname{Hom}(R,\tau^i R)$. V is regular, so we have $\operatorname{Hom}(V,\tau V) \neq 0$. For $g: V \to \tau V$ nonzero and $e: \tau V \to \tau^{i+1} R$ the inclusion we get a nonzero map $fge \in \operatorname{Hom}(R,\tau^{i+1} R)$.

PROPOSITION 2. Let A be a finite-dimensional connected wild hereditary algebra with three simple modules. If $T = X \oplus T'$ is a tilting module with X indecomposable regular and $T' \in X^{\perp}$ and if $R \to X$ is the irreducible surjective map, then we get for the component $\mathscr C$ of $\Gamma(B)$, $B = \operatorname{End}_A(T)$, containing the projective B-module F(X) the following:

- (a) $F(\tau_A^2 X) = \tau_B(F(R))$ and $F(\tau_A^2 X) = F(\tau_A^2 X)$.
- (b) $\tau_B^-(F(X)) = \tau_C^-F(R)$ and $(\tau_C^-F(R))^<$ is a full successor-closed subquiver of \mathscr{C} . C denotes the wild hereditary algebra $\operatorname{End}(T')$.

The component may be visualized as in Fig. 1.

Proof. Let \mathcal{D} be the regular component of $\Gamma(A)$ containing the tilting

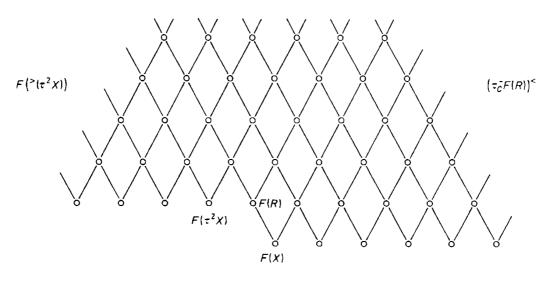


Fig. 1

summand X. Denote the indecomposable module Z in \mathcal{D} with regular length i and regular top $\tau^j X$ by (j, i).

In the proof of Proposition 1 we have shown that $(2, 1) \subset \mathcal{G}(T)$ and that (0, 2) is a torsion module with relative Auslander-Reiten sequence $0 \to (2, 1) \to (0, 3) \to (0, 2) \to 0$; moreover, we have t(1, 2) = (2, 1).

Let us prove by induction that for all $i \ge 1$

$$0 \rightarrow (2, i) \rightarrow (0, i+2) \oplus (2, i-1) \rightarrow (0, i+1) \rightarrow 0$$

is a relative Auslander-Reiten sequence in $\mathcal{G}(T)$ and that

$$t(1, i+1) = (2, i)$$

is valid.

If the assertion is true for i, then (0, i+2) is a torsion module. We consider the Auslander-Reiten sequence

(*)
$$0 \rightarrow (1, i+2) \rightarrow (1, i+1) \oplus (0, i+3) \rightarrow (0, i+2) \rightarrow 0$$

and the universal exact sequence

$$0 \to t(1, i+2) \to (1, i+2) \to Q \to 0.$$

The module Q is Ext-injective, and the same argument as in the proof of Proposition 1 shows Q = (1, 1), which immediately implies t(1, i+2) = (2, i+1). Using t(1, i+1) = (2, i) we then get from the Auslander-Reiten sequence (*) the relative Auslander-Reiten sequence

$$0 \rightarrow (2, i+1) \rightarrow (2, i) \oplus (0, i+3) \rightarrow (0, i+2) \rightarrow 0.$$

We know from [K] that the stable part of \mathscr{C} has the form $\mathbb{Z}A_{\infty}$; the above considerations then show that the component \mathscr{C} has the form we get from $\mathbb{Z}A_{\infty}$ by a ray insertion with a branch consisting of one point (see [R84, 4.6]). So it

only remains to show that $(\tau_C^- F(R))^<$ is the right part of the component \mathscr{C} . Since B is a one-point extension of C by M = F(R) (see (B)), we deduce from [R84, 2.5(6)] that $\tau_B^- F(X) = \tau_C^- M_{\bullet}$. Since R is a brick, M is a quasisimple brick in C-mod. By Lemma 2 we have $\operatorname{Hom}_C(M, \tau_C^{-n}M) = 0$ for all n > 0. Again from [R84, 2.5(6)] it then follows that $(\tau_C^- M)^<$ is a part of the component with the asserted conditions.

Remark. If Y and Z are indecomposable modules in $\mathscr C$ with Z not in the τ^- -orbit of F(X), then we have (cf. [K88])

$$\varrho(C) = \lim_{n \to \infty} (\dim_k \tau^{-n} Y)^{1/n} > \lim_{n \to \infty} (\dim_k \tau^n Z)^{1/n} = \varrho(A),$$

 ϱ denoting the growth number of the hereditary algebras A and C (see [DR]). By the results (C) and (D) at the beginning of this section we have a lot of regular components in $\mathcal{Y}(T)$ with this property. So there naturally arise the following questions:

Is it true for all regular components \mathscr{D} in $\mathscr{Y}(T)$ that for $X \in \mathscr{D}$, $\varrho(C) = \lim_{n \to \infty} (\dim_k \tau^{-n} X)^{1/n}$? Even stronger:

Do there exist regular components in $\mathcal{Y}(T)$ which are not of the type described in (D)?

Acknowledgement

Much of this paper was done during my stay in Bielefeld in 1988. I would like to thank C. M. Ringel for his personal as well as mathematical hospitality and DFG, Schwerpunkt "Darstellungstheorie endlicher Gruppen und endlichdimensionaler Algebren" for financial support.

References

- [AS] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454.
- [B] D. Baer, Wild hereditary Artin algebras and linear methods, Manuscripta Math. 55 (1986), 69 82.
- [Bü] D. Bünermann, Hereditary torsion theories and Auslander-Reiten sequences, Arch. Math. (Basel) 41 (1983), 304-308.
- [DR] V. Dlab and C. M. Ringel, Eigenvalues of Coxeter transformations and the Gelfand-Kirillov dimension of the preprojective algebras, Proc. Amer. Math. Soc. 83 (1981), 228-232.
- [GL] W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra, to appear.
- [HR] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
- [H83] M. Hoshino, On splitting torsion theories induced by tilting modules, Comm. Algebra 11 (1983), 427-441.
- [H84] -, Modules without self-extensions and Nakayama's conjecture, Arch. Math. (Basel) 43 (1984), 493-500.

- [K] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 (1989), 29-47.
- [K88] -, Preprojective components of wild tilted algebras, Manuscripta Math. 61 (1988), 429-445.
- [R76] C. M. Ringel, Representations of K-species and bimodules, J. Algebra 41 (1976), 269-302.
- [R78] -, Finite dimesional hereditary algebras of wild representation type, Math. Z. 161 (1978), 235-255.
- [R84] -, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [R88] -, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. 9B (1988), 1-18.
- [S] H. Strauss, A reduction process via tilting theory, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), 161-166.
- [U] L. Unger, Schur modules over wild, sinite-dimensional path algebras with three pairwise nonisomorphic simple modules, J. Pure Appl. Algebra, to appear.